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I. STATEMENT OF WORK

Many Air Force applications can be modeled as some exten-
sion of a pure network problem. These extensions may re-
quire additional side constraints, arcs that involve attrition or
flow of multiple commodities on a single arc. In all cases, the
network models require integer flows and may be viewed as
special cases of the integer programming model. Since some
of these applications demand computer hardware several or-
ders of magnitude faster than the fastest machines available,
we have investigated the use of parallelism to increase the
computational speed of these algorithms. Very powerful
hardware (in terms of millions of floating point operations

* per second) can be built using many low cost standard chips,
all designed to operate in parallel. Our research program ob-
jective is to develop and empirically test new serial and paral-
lel algorithms and software for network based models. The
problems studied during the past eighteen months include the
generalized network problem, the transportation problem,
sparse and dense assignment problems, the one-to-one short-
est path problem problem, and the singly constrained assign-
ment pr12!. Algorithms for all of these models have been
developed and empirically tested on a variety of sequential
and parallel computers.



H. PUBLICATIONS

Title

An Empirical Analysis of the Dense Assignment Problem:
Sequential and Parallel Implementations

Revised May 1991

Authors

J. Kennington and Z. Wang

Executive Summary

We performed a thorough empirical analysis comparing the
auction algorithm with the shortest augmenting path algo-
rithm (SAP) for the dense assignment problem. We found
that the software implementation of the SAP algorithm was
superior on serial machines. A parallel implementation of
this software yielded speedups of four using ten processors.
We successfully solved problems having over one million arcs
in less that 20 seconds on a Sequent Symmetry S81.

Publication Status

This paper appears in the ORSA Journal on Computing, 3,
299-306, 1991.
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Title

The Singly Constrained Assignment Problem 0

Revised December 1991

Authors

J. Kennington and F. Mohammadi 0

Executive Summary 0

This paper presents a new algorithm for the singly
constrained assignment problem along with an empirical 0
analysis of the software implementation of this algorithm.
The new algorithm is based on Lagrangean duality theory
and involves solving a series of pure assignment problems. 0
The software implementation has successfully solved
problems having over one-half million binary variables in
less than fifteen minutes on a Sequent Symmetry S81 using a
single processor.

Publication Status

This paper has been submitted for publication and is currently
under review.
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Title

Generalized Networks: Parallel Algorithms and an Empirical
Analysis

Revised January 1991

Authors

R. Clark, J. Kennington, R. Meyer and M. Ramamurti

a

Executive Summary

A generalized network problem is a specialization of the
linear programming problem in which each column of the
constraint matrix has at most two nonzero entries. It is well
known that a generalized network problem possesses a special
graphical structure which can be exploited in algorithm
development. Specialized sequential and parallel codes
which exploit this graphical structure have been developed
and empirically tested on a Sequent Symmetry S81.

Publication Status

This paper has been accepted for publication in the ORSA
Journal on Computing.
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Title

Computational Comparison of Sequential and Parallel 0
Algorithms for the One-To-One Shortest-Path Problem

Revised January 1992

Authors

R. Helgason, J. Kennington, and B. Stewart 0

Executive Summary 0

The problem of finding the shortest path between a
designated pair of nodes is a fundamental problem in
operations research which also serves as a building block for 0

other algorithms. The classical Dijkstra algorithm begins at
one of the designated nodes and fans out from this node until
the other designated node becomes a member of the labeled •
set. In this paper we empirically demonstrate that a better
algorithm is obtained by a procedure that begins at both
designated nodes and fans out in both directions either 0

simultaneously in parallel or alternately in series.

Publication Status

This paper has been submitted for publication and is currently
under review. 0
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Title

The Shortest Augmenting Path Algorithm for the
Transportation Problem

Revised February 1991

Authors

J. Kennington and Z. Wang

Executive Summary

This study presents an empirical analysis of the shortest
augmenting path algorithm, augmented by advanced start
heuristics, for the transportation problem. The software
implementation of our algorithm is the best available for
problems having a small total supply. As the total supply
increases, the algorithm degrades and is computationally
slower than competing primal simplex software.

Publication Status

This paper has been issued as a technical report.
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Technical Report 88-OR-16

AN EMPIRICAL ANALYSIS OF THE DENSE ASSIGNMENT PROBLEM:

SEQUENTIAL AND PARALLEL IMPLEMENTATIONS

by

Jeffery L. Kennington
Department of Computer Science & Engineering

Southern Methodist University

Dallas, Texas 75275-0122
BITNET: E4CR1001@SMUVM1

FAX: (214)-692-4138

Zhiming Wang
American Airlines Decision Technologies

P. 0. Box 619616\MD 3345
DFW Airport, Texas 75261-9616

FAX: (817)-967-9763

revised May 1991

Has appeared in the ORSA Journal on Computing,3, 299-306, 1991.
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ABSTRACT

The best algorithms for the dense assignment problem are acknowledged to be the auction

algorithm and the shortest augmenting path algorithm. In this investigation we present an

empirical analysis of two of the current best software implementations of these two meth-

ods on three different serial machines. These software implementations were developed

by Bertsekas of the Massachusetts Institute of Technology and by Jonker and Volgenant of

the University of Amsterdam. This report is an independent evaluation of the software

implementation of these two algorithms. For the sample of problems examined and the

sample of hardware used (IBM 3081D, Sequent Symmetry S81, and VAX 750), we found

that the shortest augmenting path algorithm was the fastest. We also report our empirical

results with a parallel version of the shortest augmenting path algorithm. On 1200x1200

dense assignment problems, speedups of approximately four were achieved using ten

processors. Million arc problems were solved in less than twelve seconds on a Sequent

Symmetry S81 with the parallel shortest augmenting path algorithm.

A0
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The classical assignment problem (also known as the weighted bipartite matching

probem) is to assign n men to n distinct jobs so that the total cost of as ., nment is

minimized. Mathematically, this may be formulated as the following special mathemati-

cal program:

minimize I c'i xij
i,j •

subject to: xij = 1, j= 1,...,n

Xij = 1, i=1...,n
J

xij E {0,l}, (all i,j) 0

where cij denotes the cost for assigning man i to job j and xij = 1 implies that man i is

assigned to job j. Due to the total unimodularity of the constraint matrix, this problem

can be solved by the simplex algorithm and every basic solution will have xij E {0, 1} (see

Kennington and Helgason [1980]). Hence, classic linear programming duality theory and

Kuhn-Tucker optimality conditions can be used in algorithm development for this prob-

lem.

Spccialized algorithms for the assignment problem can be classified into five catego-

ries as follows:

(i) maximum flow (primal-dual),

(ii) primal simplex,

(iii) dual simplex,

(iv) auction algorithm, and

(v) shortest augmenting paths.

The first maximum flow algorithm was developed by Kuhn [19551 and is called the Hun- 0

zarian method. Its name comes from the fact that the algorithm is developed from results

of two Hungarian mathematicians. Variations were presented by Kuhn [19561. Derigs

[1985] shows that the shortest augmenting path method can be viewed as a special imple- 0
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mentation of the Hungarian method. Ahuja, Magnanti, and Orlin [1989] call the Hungar-

ian method a primal-dual variant of the successive augmenting path algorithm.

A specialized primal simplex algorithm for the assignment problem was developed by

Barr, Glover and Klingman [1977]. Their method, called the alternatng basi algorithm,

only considers a subset of the possible bases. This idea was further exploited by Hung

[1983] in his development of a polynomial simplex algorithm for this problem. An exten-

sive computational study comparing the Hungarian algorithm with primal simplex meth-

ods was performed by McGinnis [1983].

A dual polynomial simplex method known as the signature method has been devel-

oped by Balinski [1985, 1986]. Extensions for the sparse assignment problem were devel-

oped by Goldfarb [1985], and the relationship between the signature method and the

shortest augmenting path method was presented by Derigs [1985]. Another variation of

this algorithm has been developed by Akgul [1988].

Bertsekas [1979, 1981, 1988] and Bertsekas and Eckstein [1988] give a complete theo-

retical development of the auction algorithm. This algorithm critically depends on the

ideas of E-complementary slackness and adaptive scaling. A recent version of Bertsekas'

auction code was completed in June 1988 and has been placed in the public domain. Barr

and Christiansen [1989] have experimented with a parallel version of this algorithm writ-

ten in C++ on the Sequent Symmetry S81, and Phillips and Zenios [1989] have experi-

mented with this algorithm on the Connection Machine. Perry [1988] experimented with

a parallel version of the auction algorithm on both the Alliant FX/8 and the Sequent

Symmetry S81.

Hung and Rom [1980] presented a shortest augmenting path method which had both a

polynomial bound and good computational results. Other variants of the shortest aug-

menting path method have been presented by Glover, Glover and Klingman [1986] and
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Jonker and Volgenant [1987). An extensive computational study with the shortest aug-

menting path method may be found in Derigs [1985].

Recently, scaling based algorithms have been presented for the assignment problem

(see Gabow [1985] and Orlin and Ahuja [19881). These algorithms are derivatives of the

Hungarian method and the auction algorithm, respectively, with the added feature of data

scaling. Bertsekas is using a similar idea in his June 1988 auction code.

There are three ways to analyze the performance of an algorithm: worst-case analy-

sis, average case analysis, and empirical analysis. The worst-case analysis results for the 0

assignment problem are presented in Ahuja, Magnanti, and Orlin [1989]. The objective

of our study is to present an empirical analysis of two of the fastest serial codes. These

codes were obtained directly from the authors, and they represent the current best soft- 0

ware implementation of the top competing algorithms. They were run on three different

machines (IBM 3081D, Sequent Symmetry S81, and VAX 750) to allow for an analysis

with respect to differences in machine architecture and compiler. The shortest augment- 0

ing path code was then parallelized and the speedup achieved on a shared memory multi-

processor was reported.

1. SEQUENTIAL CODES

Five algorithms for solving dense assignment problems have been implemented and •

computationally compared by various researchers. We are not aware of any computa-

tional studies involving the dual algorithms. Derigs [19851 shows that a shortest augment-

ing path implementation is superior to a Hungarian implementation. This has been con- 0

firmed by Jonker and Volgenant [1987] and by the authors in a comparison with the

codes of Jonker and Volgenant [1987] and Rardin [1986]. Glover, Glover and Klingman

[1977] found that their shortest augmenting path code was superior to the specialized 0

A-6
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simplex code of Barr, Glover and Klingman [1977]. The authors have confirmed this with

a comparison of the Jonker and Volgenant [1987] and Barr, Glover and Klingman [1977]

codes. Jonker and Volgenant [1987] also concluded that their dense shortest augmenting

path code was superior to the auction code of Bertsekas [1981].

After many studies over a fifteen year period, it is acknowledged that the two best

algorithms for dense assignment problems are the auction algorithm and the shortest

augmenting path algorithm. One of the best software implementations of the auction

algorithm is the code of Bertsekas (Version 1.0, June 1988). Some of the other auction

codes are very sensitive to the cost structure and degrade as the cost range becomes

larger. These other codes sometimes work very well for small cost ranges and fail for

cost ranges as small as [0,1000]. By the use of adaptive scaling, Bertsekas' code works

well for both a small cost range and a large cost range. This code scales all cost data by

n+1 and solves a sequence of problems with decreasing values of the stopping criterion.

All calculations are performed in integer arithmetic. Two new parallel auction codes

which do not use adaptive scaling may be found in Kempka, Kennington, and Zaki

[1991]. An excellent empirical analysis comparing a parallel version of the auction algo-

rithm with a parallel version of the Jonker-Volgenant code on an Alliant FX/8 may be

found in Zaki [1990].

We believe that the best implementation of the shortest augmenting path algorithm for

serial machines was developed by Jonker and Volgenant [1987]. Dijkstra's algorithm is

used to obtain the shortest augmenting paths and only integer arithmetic is required. The

code also incorporates an elaborate pre-processing stage which greatly reduces the total

number of times that the Dijkstra algorithm is required. It also uses a clever data struc-

ture for updating the dual variables after a shortest augmenting path has been found. The

code maintains dual -variables and the reduced costs are calculated as required. Both

codes are written in standard FORTRAN.
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The empirical results of our experiment are presented in Table 1 and Figure 1. All

times exclude input and output but include the pre-processing. For all test problems, all

cost ranges, and all machines, the shortest augmenting path code dominated the auction

code. The auction code had the greatest difficulty when the cost range was the smallest,

i.e. [0,1001. When the cost range was at least [0,1000], the auction algorithm was af-

fected very little by the cost range. The shortest augmenting path code was adversely

affected by an increasing cost range. The machine type affected the empirical analysis.

On the Sequent, the shortest augmenting path code was 4.41 times faster than the auction

code, on the IBM it was 3.87 times faster, while on the VAX it was 2.79 times faster.

This confirms our belief that the comparative performance of two codes is intimately

linked to the hardware, operating system, and compilers used. For our tests the IBM was

running CMS and both the Sequent and the VAX were running UNIX ' t. Our results

contradict the widely held belief that the auction algorithm converges faster for lower cost

ranges. Bertsekas' auction code for dense problems was not sensitive to changing the cost

range from [0,1000] to [0,100000]. In fact the shortest augmenting path code is much

more sensitive to the larger cost ranges than the auction code is. We also observed the

well-known phenomenon of the auction algorithm that a significant amount of the compu-

tational time is spent attempting to complete the last few assignments. This is in contrast

to the shortest augmenting path algorithm that achieves one more assignment with each

application of Dijkstra's algorithm. Each application of the shortest path algorithm can

be very expensive, but it is guaranteed to result in one more assignment. This feature

along with the extensive pre-processing to obtain a good set of partial assignments makes

this approach work extremely well.

t UNIX is a trade mark of AT&T Bell Laboratories.
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We also developed a modification of the shortest augmenting path code which used a

Dijkstra two-tree shortest path algorithm (see Helgason, Kennington and Stewart [19881),

but that system was not competitive with the original shortest augmenting path implemen-

tation. At the termination of the classical Dijkstra shortest path algorithm, all the infor-

mation required to update the duals is available and the dual update can be executed very

efficiently. The two-tree Dijkstra method can obtain the shortest augmenting path faster

than the classical Dijkstra shortest path method; however, additional work is required to

discover which duals must be changed and by what amount. The overhead required for

b the dual variable updates exceeded the potential benefits of the two-tree Dijkstra method

for finding the shortest augmenting path.

2. A PARALLEL SHORTEST AUGMENTING PATH CODE

This section contains a description of the algorithm followed by an empirical analysis

which identifies the computationally expensive steps of the software implementation of

this method. By using prescheduled data partitioning, the operations of these computa-

tionally expensive steps were allocated among multiple processors and speedup was

measured for computational experiments using up to ten processors.

The algorithm of Jonker and Volgenant [1987] may be divided into three procedures

0 as follows:

(i) column reduction,

(ii) augmenting row reduction, and

10 (iii) augmentation using a shortest path procedure.

Procedures (i) and (ii) are heuristics which provide an advanced starting solution for

procedure (iii) which is an exact method. The details of the algorithms are given below.

A-9



THE SHORTEST AUGMENTING PATH ALGORITHM (SAP)

Input:

1. The problem size, n. S

2. The nxn cost matrix, c(i, j).

Output:

1. x[i] = j implies that man i is assigned to job j.

2. y[j] = i implies that job j is assigned to man i.

3. v[j] denotes the dual variable associated with job j.

begin

call procedure COLUMN REDUCTION 0

call procedure AUGMENTING ROW REDUCTION

call procedure BUILD A TREE

end

A-10



procedure COLUMN REDUCTION

begin

1. x[i] -0, i= 1, ... , n;

2. for j=1, ... ,n

3. -s ' m in {c[i, j] : i = 1, ... , n);

0 4. v[j] *-y and let i* {i: c[i, j] = y 1;

5. if x[i'] = 0, then x[i ° ] -- j, y[j] -- i;

6. end for

0 7. for i =1, ... n

8. if x[i] 0, then

9. At min {c[i, j] - v[j]: j = 1, ... , n andj x[i]};

10. v[x[i]] -- v[xli]] -,u;

11. end if

12. end for

end
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procedure AUGMENTING ROW REDUCTION

begin
13. 14-- 0, t 0;

14. for i=1, ... , n

15. if x[i] = 0, then 1 -- 1+I, f[l] *- i;

16. end for

17. if 1 = 0, then terminate with an optimum;

18. m*-l,k-- 1,1*- 0;

19. i *-- f[k], k - k+1;

20. u, - min{c[i, j] - vij]: j=1, ..., n}, let j, E U: c[i, j] - v] = ul},

u 2 - min{ci, j]- vij]: j=1, ..., n and j # ji), let j2 E U: c[i, i] - v] =U2

and j jI};

21. i, *-- y[ j, 1;

22. if u1 < u 2 , then v[ j1 ]*- v[ j ] + u, - u2;

23. else if i, = 0, then go to 26, else jl -- j2, il --y[ hi;

24. if i1 = 0, then go to 26;

25. if U1 < u 2 , then k - k-1, f[k] - ii; else 1 1+1, f[1]- ij;

26. x[i] jl, y[ j,]*- i;

27. ifk< mgoto 19;

28. t *- t+1;

29. if l > 0 and t <2, then go to 18;

end

A
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procedure BUILD A TREE

begin

30. m *--l

31. forl= 1, ... ,m

32. i* *-- fill;

33. READY *- D, TODO- {1, ... n}, RSINK {j: y[j] =0};

34. doj] - c[i*, j] - v[ij, predLi] -i, j=1, ..., n;

35. u *-- min{d[jI: jE TODO), SCAN -- {j: dlii = yu, je TODO), TODO ,-
TODO\SCAN;

36. if SCAN fl RSLNK 0 (D, then go to 45;

37. for all j, E SCAN

38. i - y[ jl, h -- c[i, j,] - v[ jI] -,u;

39. for all j E TODO

40. p * c[i, j] - vii - h;

41. if p < dlU], then d U] *-- p, pred U] ,-i;

42. end for

43. READY - READY U {j };

44. end for

45. go to 35

46. vji] *- v[j] + dlj - y, for all jE READY;

47. let jE SCAN fl RSINK

48. i - predoll, yj *- i, k *-j, j *-x[i], x[i] *-k;

49. ifi - i* go to 48;

50. end for

end
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Sixty test problems were run and the percentage of computer time allocated to each of

these procedures is tabulated in Table 2. All runs were made on a Symmetry 581 from

Sequent Computer Systems, Inc. This Symmetry S81 is a multiprocessor system with 32

Mbytes of shared memory and twenty Intel 80386 cpu's. For this study, all codes used

only integer arithmetic and did not make use of math co-processors. Note that for these

problems, an average of 18% of the time was consumed by the column reduction, 22%

was consumed by the augmenting row reduction, and 60% by the tree building activities.

Within these three procedures, steps 3, 9, 20, 35, and 39 through 42 are the most time

consuming. The percentage of time allocated to these steps is tabulated in Table 3, with

over one-half of the computer time attributed to steps 39 - 42.

By using prescheduled data partitioning on steps 3, 9, 20, and 39-42, a parallel SAP

code was developed. This software runs in sequential mode until one of the key steps (3,

9, 20 or 39) is reached. Each of these steps is executed in parallel followed by a process

synchronization and a return to sequential mode. The objective is to minimize the over-

head for parallel processing. The computational times are shown in Table 4 with the

corresponding speedups presented in Table 5. As shown in Table 5 under the column

entitled I cpu, the overhead for parallel processing is approximately 20%. This means

that the speedup is limited to at most 5 and the actual speedups using ten processors

ranged from a low of 3.27 to a high of 4.32. As expected, the speedups improved as the

problem size increased (see Figure 2). The speedups were also slightly better for the

fifteen problems having the smallest cost range. This is due to the fact that the pre-proc-

essing heuristics are more effective on these problems as shown in Table 2 and the pre-

processing steps require less overhead for parallel processing than does the tree building

procedure. We also parallelized step 35; however, the synchronization required for updat- 0

ing the SCAN and TODO lists exceeded the benefit of the parallelization.
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For the problem sizes and cost ranges analyzed, the times in Table 4 are the best

times that we have seen on the Symmetry S81. The parallel shortest augmenting path

code is a powerful tool that can easily solve al 1,000,000 arc dense assignment problems

in less than sixteen seconds using six processors and less than twelve seconds using ten

processors.

Experiments with a parallel version of the auction algorithm on a Sequent Symmetry

S81 may be found in Barr and Christiansen [1989]. They used their parallel assignment

code to solve a 1,000,000 arc dense assignment problem with a cost range of [1,1000].

Their best time on a Sequent Symmetry S81 using six processors exceeded five minutes.

Performance characteristics of the Jacobi and Gauss-Seidel versions of Bertsekas' auction

algorithm on an Alliant FX/8 may be found in Kempa, Kennington, and Zaki [1990].

They found that the Gauss-Seidel version was generally more efficient in the scalar envi-

ronment, but the Jacobi version was generally more efficient in the parallel environment.

The observed speedup due to vectorization was higher than that due to concurrency for

both versions. The performance characteristics of several software implementations of

this algorithm for the Connection Machine CM2 may be found in Wein and Zenios

[1990a, 1990b]. Their experimentation indicated that the auction algorithm was not well

suited for the architecture of the CM2. Bertsekas and Castanon [1989] compare a variety

of synchronous and asynchronous implementations of the auction algorithm on the Encore

Multimax. They found that their asynchronous implementations were superior to their

synchronous systems.

3. SUMMARY AND CONCLUSIONS

The empirical analysis presented in this study indicates that for dense assignment

problems having a size up to 800x800, the shortest augmenting path software is faster

than the auction algorithm software. This conclusion was based on test runs with sixteen
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randomly generated test problems with four different cost ranges and run on three differ-

ent serial machines. Contrary to the widely held belief that the auction algorithm per-

forms worse as the cost range increases, we found this not to be the case. We believe that S

Bertsekas' Version 1.0, June 1988 implementation has eliminated this difficulty via the

use of adaptive scaling. We did observe the difficulty with the "end game" in which an

inordinate amount of time is required to complete the last few assignments. The shortest

augmenting path method has the attractive feature that each time a shortest path is calcu-

lated, one new assignment is made. We found that the shortest augmenting path code

was adversely affected by an increasing cost range. As the cost range increases, larger 0

trees must be developed by Dijkstra's algorithm to obtain the shortest path from an unas-

signed man to an unassigned job.

By using the technique of prescheduled data partitioning, we parallelized the shortest

augmenting path code of Jonker and Volgenant [1987] for the Sequent Symmetry S81.

Speedups of three to four were achieved on 1200x1200 dense problems using ten proces-

sors. Remarkably, 1,000,000 arc dense assignment problems were solved using this par-

allel code in less than twelve seconds (wall clock time). Even though this code was

developed for a particular multiprocessor system with shared memory, it can be used with

any shared memory parallel processing system. S
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ABSTRACT

This manuscript presents a new heuristic algorithm to find near optimal integer solu-

tions for the singly constrained assignment problem. The method is based on Lagran-

gean duality theory and involves solving a series of pure assignment problems. The

software implementation of this heuristic successfully solved problems having one-half

million binary variables (assignment arcs) in less than fifteen minutes of wall clock

time on a Sequent Symmetry S81 using a single processor. In no case did our heuristic

fail to obtain a feasible integer solution guaranteed to be within 10% of an optimum.

In computational comparisons with MPSX and OSL on an IBM 3081D, the specialized

software was from one hundred to one thousand times faster. Our software proved to

be very robust as well as fast The robustness is due to an elaborate scheme used to

update the Lagrangean multipliers and the speed is due to the fine code used to solve

the pure assignmer! problems. We also present a modification of the algorithm for the

case in which the number of jobs exceeds the number of men along with an empirical

analysis of the modified software.
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I. INTRODUCTION

The singly constrained assignment problem is to determine a least cost as-

signment of n men to n jobs such that a single additional constraint is satisfied.

This model is a special case of a binary linear program and may be stated mathe-

matically as follows:

minimize I cijxi j  (1)
(i. j) E E

subject to I = 1 , i 1,...,n (2)
j: (i,j) S E

= 1 , (3)
i: (i,j) E E

Xij G (0, 1) , all (i,j) E E (4)

" aixij < b (5)
(i. j) E E

where cij denotes the cost for assigning man i to job j, ai, denotes the coefficient of

xij in the side constraint, b denotes the right-hand-side of the side constraint, E is

the set of (man, job) pairs corresponding to eligible assignments, and xi, = 1 im-

plies that man i is assigned to job j. In order to simplify the notation we let a

denote the vector corresponding to the coefficients in (5), x denote the vector cor-

responding to the binary decision variables, c denote the vector of costs, and

T= { x : (2), (3), and (4) ). Then the singly constrained assignment problem can be
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stated as P, = min {cx : x e T and ax < b}, and it is well-known that P, is

NP-complete.

The singly constrained assignment was first used by Brans, Leclercq, and

Hansen [1973] to model the core management of a pressurized water reactor. The

problem is given two sets of fresh and exposed assemblies determine the location

pattern of these assemblies which maximizes the reactivity of the core under a

constraint on power-distribution form factor. After linearization, Brans, Leclercq,

and Hansen reduce the problem to a sequence of singly constrained assignment

problems and propose an implicit enumeration routine to solve these problems.

Our work on P, was motivated by models which had been developed by analysts at

the Navy Personnel Research and Development Center in San Diego. These models

involve the optimal assignment of men to jobs under a budget constraint related to

relocation cost.

The first specialized algorithm for P, was presented by Gupta and Sharma

[1981]. Their method was a straight forward enumeration scheme and they present

no computational results. Aggarwal [1985] presents an improved algorithm for P,

which combines Lagrangean-relaxation with the enumeration algorithm of Gupta

and Sharma [1981] to obtain an optimal solution. No computational results for this

method is presented. Mazzola and Neebe [19851 develop a branch-and-bound al-

gorithm for the constrained assignment problem. To generate solutions at each

node of the branch-and-bound tree they developed a method that combines a

restricted basis pivoting rule followed by a subgradient routine. Their empirical
j

evaluation of the heuristic and the branch-and-bound algorithm indicates that both

procedures are satisfactory for dense assignment problems of size up to 100x100.

Bryson [1991] presents an algorithm based on the parametric programming proce-

dure of Gass and Saaty [1955]. The largest problem they solved had fewer than

E-4



2000 edges and did not exploit the network structure of this model. This is in

contrast to our empirical investigation in which the small problems have over a

quarter of a million edges. Ball, Derigs, Hilbrand, and Metz [1990] present an

algorithm which will solve the special case of P, in which aij e (0,1} for all (i,j).

The work by Klingman and Russell [1975] and Barr, Farhangian, and Ken-

nington [1986] is for the continuous version of P1 rather than the binary version.

That, is, the above work would be applicable for the model in which (4) is replaced

with the nonnegativity constraint xij a 0, all (i,j) e E.

Klingman and Russell [1978] developed a simplex based method for the

transportation problem with a single side constraint and Glover, Karney, Klingman,

and Russell [1978] developed a simplex based method for the transshipment prob-

lem with a single side constraint. Authors of both papers state that codes based on

their procedures are significantly faster than the LP code APEX-I and they both

obtain an integer solution for the problem with an inequality side constraint by

pivoting into the basis the slack variable associated with the side constraint. This

yields a triangular basis which automatically produces an integer solution. Empiri-

cally these integer solutions were found to be within 1% of optimality.

Since (1)-(5) is a binary linear program, all the literature on integer pro-

gramming applies (see Everett [1963], Geoffrion [1969, 1974], Salkin [1974],

Shapiro [1971, 1979], Parker and Rardin [1988], Nemhauser and Wolsey [1988]).

In practice most integer programming models are either solved as a linear program

and the solutions are rounded using some heuristic or branch-and-bound is used

in an attempt to obtain a solution within a prespecified tolerance.

The objective of this study is to present a new algorithm for the singly con-

strained assignment problem. The algorithm is for the problem having an inequal-
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ity side constraint. We also show how this algorithm can be used to solve problems

in which (5) is an equality and problems in which (3) is replaced with

X xjj < 1 1j=,...,m. (6)
i: (ij) E E

The algorithm uses a Lagrangean relaxation and solves a series of assignment

problems. Empirical results demonstrate the superiority of this approach over com-

peting software. Problems having one-half millio6 arcs were solved in less than

fifteen minutes on a Sequent Symmetry S81 using a single processor.
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II. THE ALGORITHM

In this section we present a heuristic algorithm for the singly constrained

assignment problem, P, = min ( cx : x e T, ax <_ b ). Let P2 = min { cx : x e T)

be a feasible region relaxation of P,, and let P3 = min { ax-b : x E T ). By

dualizing the side constraint one obtains a Lagrangean relaxation of P, given by

P(#) = min { cx + P (ax-b) : x e T } where /5 is the Lagrangean multiplier. Let

v[P] denote the optimal objective function value for any problem P, then a

Lagrangean dual for P, is DI, = max { v[P(6)] : ,i > 0 }.

We attempt to solve the Lagrangean dual, Dl,, by solving the problems P2,

P3 and a series of P(P) for different values of 4. P2 is solved to obtain the in-

itial lower bound, lb, and to determine if the side constraint is redundant. The

solution to P3 either establishes that P, has no feasible solution or provides an

initial upper bound, ub. Solving the Lagrangean relaxation, P('6), always pro-

vides a lower bound and if the optimal solution, x , is feasible for P,, then cx3

is an upper bound.

It is well known that v[P(46)] is a piece-wise linear concave function over

R*. Let x8 denote an optimum for P(f8) at any point P. Let P* denote an opti-

mum for Dl. The optimum for D1, may be unique as illustrated in Figure 1 or

may have an infinite number of solutions as illustrated in Figure 2. For the case

illustrated in Figure 1, for all P > 46, axE < b and xp is feasible for P1, and for

all 4 < P6, axf > b and xp is not feasible for P. For the case illustrated in Fig-

ure 2, for all 46 > P*, either axp < b and xp is feasible for P, or axp = b and xf

is an optimum for P. Similarly for all 4 < P*, either axp > b and xp is not fea-

sible for P or axp = b and x. is an optimum for Pi.
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Let u and v denote upper and lower bounds, respectively on 8. Then a

bisection search can be used to obtain fi Since obtaining each value of v[P(,6)]

for a given fi requires solving an assignment problem, we attempt to obtain a

small interval of uncertainty [u,v] prior to initiating the bisection search. It is

well-known that if the duality gap is zero, then v[D1,]=v[P 1]. That is,

cx," + fi*(axfi- b) = v[P1 ] , or (7)

fi*= (v[P1] - cxfq)/(ax#- - b). (8)

Prior to using the bisection search, we obtain estimates for 8" using (8) with

v[P1 ] replaced by (lb+ub)/2, cx6- replaced by ub, and axfi- replaced by ax3. That

is, initial values of P are given by:

f = (ub - lb)/(2(ax 3 - b)). (9)

The basic strategy of a heuristic algorithm for P1 follows:

step 1. find an initial lower bound,

step 2. find an initial upper bound,

while axp < b and stopping criteria not satisfied repeat steps 3 and 4,

step 3. use (8) to estimate P then solve P(fl),

step 4. update u and ub and if possible v and 1b,

while stopping criteria is not satisfied repeat steps 5-7,

step 5. let fi = (u+v)/2 and solve P(6),

step 6. if axp < b update u, ub, and if possible lb,

step 7. if axp > b update v and if possible ub and lb.

139



The algorithm terminates if one of the following conditions is satisfied:

(i) axp=b, since by strong Lagrangean duality xp is an optimum.

(ii) ub-lb <_ .1 1b, since for Navy Personnel Research and Development

Center models, an assignment that is guaranteed to be within 10%

of an optimum is considered to be acceptable.

(iii) iter - maxiter, since we cannot guarantee that criterion (i) or (ii)

will ever be satisfied, we also stop after solving a prespecified

number of assignment problems.

The ASSIGN+1 algorithm for P, is described below:

Input:

1. The cost vector, c.

2. The side constraint, vector a and constant b.

3. The set of (man, job) pairs corresponding to eligible assignments, E.

4. The maximum number of iterations permitted before termination, maxiter.

Output:

1. The solution vector, y.

2. A lower bound for P1, lb.

3. The objective value corresponding to y, ub.

4. The termination status. If P, has no feasible solution, then

status = infeasible; if an optimal solution was obtained then status=optimal; 0

otherwise, status = feasible.

B-10



algorithm ASSIGN+1:

begin

iter:=O, v:=O;

FIND INITIAL LOWER BOUND;

FIND D4iTIAL UPPER BOUND;

while y>0 and iter <maxiter do FIND INiTIAL U;

while v=0, y<O,, Iub-lbh>.ljlbI, and iter <maxiter do REDUCE U;

0 while Iub-lbl>.ljlbI and iter<maxiter do BISECTION;

if u>' , then 6:= u and let xa be an optimum for P(6);

y:= XP;

end;

procedure FIND INITIAL LOWER BOUND
0

begin

let X2 be an optimum for P2, iter:= iter+1, lb:= cx2;

if aX2  ! b, then status:= optimal, y:= x2, ub:= cy, stop;

end;

procedure FIND INITIAL UPPER BOUND

begin

let x3, be an optimum for P3, iter:= iter+1, 8:= ax3-b;

if 8>0, then status:= infeasible, stop;

else stat us:- feasible, ub:= cx3, -y:= -1, P:= (b-ub)/(26);

end;



Procedure FIND INITIAL U 0

begin

let xp be an optimum for P(8), iter:= iter+1;

-y:= axp -b, lb:= max{b,v[P(f)I;

if y=O, then status:= optimal, y:= xp, ub:= cy, stop;

if y<O then ub:= min{ub, cxp), u:= P; 0

else v:=max{v,#) , fl:= 2p;

end;

procedure REDUCE U

begin

if fl=(lb-ub)/(28), then :=P/2;•

else fi:= (lb-ub)/(28);

let x# be an optimum for P(fp), iter:= iter+1;

,y:= axy -b, lb:= max{lb,v[P(8)]};

if =0, then status:= optimal, y:= xp, ub:= cy, stop;

if <O, then ub:= min {ub, cxp}, u:= min {u,p};

else v:= P;

end;
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procedure BISECTION

begin

P := (u+v)/2;

let x# be an optimum for P(fl), iter:= iter+1;

-y:= axp -b, lb:= max{/b,v[P(8)]};

if y=O, then status:= optimal, y:= xp, ub:= cy, and stop;

if y<O, then ub:= min{ub, cxp }, and u:= min{u,);

else v:= max{v,,6);

end;

It is well-known that the main difficulty with the Lagrangean approach is the

selection of the sequence of multipliers, P, so that software implementations using

these rules are robust. Convergence results can be found in Allen, Helgason, Ken-

nington, and Shetty [1987]. Most of the steps in the above algorithm are related to

the elaborate scheme for updating P which was developed through empirical analy-

sis.
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III. AN EQUALITY SIDE CONSTRAINT

In this section we show that the ASSIGN+1 algorithm is also applicable to the

assignment problem with an equality side constraint, P', = { min cx : x E T, ax=b }.

That is, we show that if P'1 is a feasible problem, then solving P'1 is equivalent to

solving either P, or P" = { min cx : x e T, ax a b ) or P2.

Propoitin Let P'1 be a feasible problem, and let x2 be an optimum for P2.

If ax2 < b, then v[P'1 ] = v[P" j.

Proof Let F(P) denote the feasible region for any problem P, x" be an optimum 0

for P", and suppose v[P'1 ] 0 v[P"]. Since v[P'1 ] 0 v[P"], and F(P')c F(P"),

then v[P'1 ] > v[P"1 ]. Therefore ax", > b. Let x", +1 .d, with 0 < X, _S 1 and d, =

x2- x"#1 be the line segment with end points x2 and x",. This line segment can also •

be written as x2+X2d2 with 0 < K2 < I and d 2 = x",-x 2. Note that d 2 is a feasible

direction for P2 at the point x2, since x2 E F(P2) and x" e F(P2). Let Ddg(y) denote

the directional derivative of the function g(x) in the direction d at the point y. 0

Letting g(x) be the linear function cx, we know that Ddg(x"])= -Ddg(X2. Since

a x", > b and ax2 < b, there exists a 11 such that i = x", +11 d, and a"=b. Since f E

F(P'1 ) and v[P'1J > v[P"], ci" > cx"1 . Likewise, c" > cx2. Hence Ddg(X) < 0 and 0

Dd 2g(x-) < 0, a contradiction. Hence v[P'1]= v[P".].

Proposition Let P', be a feasible problem, and let x2 be an optimum for P2.

If ax2 > b, then v[P',] = v[P,].

roof Similar to the proof for the Proposition 1.

Proosition-3 Let x2 be an optimum for P2. If ax2 = b, then x2 solves P'%.

Erof Let F(P) denote the feasible region for any problem P, F(P'1 )cF(P) and •

x2 e F(P'1 ), then x2 is an optimum for P'1 . 1
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As Propositions 1 and 2 indicate, the equality problem can be solved by

0 solving an inequality problem. The solution to P2 indicates whether one needs to

solve the problem with ax < b or ax > b. Since finding a set of assignments for

which ax = b may not always be possible and since from our work with the Navy

Personnel Research and Development Center we have found that most constraints

can be slightly violated and acceptable solutions can still be obtained, we replace

ax-b = 0 with lax-bi < . That is, instead of P', we attempt to solve min { cx x e

T and lax-bj < e }. For all our work we set e to .0lb.

0

0



IV. EMPIRICAL ANALYSIS

The algorithm ASSIGN+1 has been implemented in software and empirically

analyzed on both a Sequent Symmetry S81 and an IBM 3081D for both inequality

and equality side constraints. Both codes are written in FORTRAN and use SEMI

(see Kennington and Wang [1990a, 1990b]) to solve the assignment problems.

SEMI is an implementation of the shortest augmenting path algorithm for sparse

semi-assignment problems and is claimed to be one of the fastest codes available

for both assignment and semi-assignment problems.

We developed a test problem generator with the following inputs: (i) the

number of men, (ii) the arc density, (iii) the maximum cost, d, and (iv) the side

constraint multiplier, k. Both the costs and the side constraint coefficients are uni- 0

formly distributed over the range [0 - fl. We randomly generate a feasible assign-

ment, K and determine b for this assignment so that af'= b. The right-hand-side,

b, for the side constraint is set to kb. For the inequality problems and k = 1, we

observed that for most problems, the side constraint was redundant and therefore a

very easy problem. As k becomes smaller, the feasible region becomes smaller and

for sufficiently small k the problem may become infeasible.

The generator was used to generate the eighty-one inequality problems de-

scribed in Table 1. Under the column entitled "Side Const", k was set to .2, .5, and

.9 for the rows entitled "small", "medium", and "large", respectively. It should be

noted that the software is very robust as a function of the magnitude of b and it

requires very few iterations to satisfy the optimality criteria. Near optimal solutions

to integer programs with over one-half million binary variables were routinely

obtained in less than fifteen minutes.
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Table 2 gives our empirical results with 135 equality problems. Under the

column entitled "Side Const", k was set to .2, .5, .9, 1.2, and 1.5 for the rows

entitled "very small", "small", "medium", "large", and "very large", respectively.

The software is very robust over a wide range of input parameters and performed

very well on all these problems.

In contrast with some of our previous experience using subgradient optimiza-

tion, we never found a problem that caused this software any major difficulty. We

attribute the robustness of this software to the elaborate scheme for updating the

Lagrangean multiplier which works well for this class of problems. We attribute

the speed of this software to the semi-assignment software, SEMI. Of course, the

version of SEMI that we used was modified to handle real cost as opposed to

integer data required by the version described in Kennington and Wang [1990a].

Tables 3 through 6 present our empirical results comparing the specialized

software for the singly constrained assignment problem with both MPSX (see

Mathematical Programming System Extended [1979]) and OSL (see Optimization

Subroutine Library [1990]). If the ASSIGN+1 software for the equality side con-

straint terminates due to the maximum number of iterations and no feasible solu-

tion has been found, then the current best known Lagrangean multiplier is used to

find a solution. In this case the side constraint violation will exceed 1%. This oc-

curred for four of sixteen problems presented in Tables 3-6. In the worst case, the

maximum deviation from feasibility was 1.65%. That is, all solutions satisfied the

constraint lax-bi < 0.0165b.

All the MPSX and OSL runs were made with default parameter settings. A

few of the smaller problems were successfully solved, but the times were from two

to three orders of magnitude slower than those for the specialized software. In

addition we ran a specialized network with side constraint code, NETSIDE (see

B-17



Kennington and Whisman [19901) on an 800x800 test problem in an attempt to

solve the linear programming relaxation of this model. Convergence was not

achieved after two hours of cpu time on the Sequent Symmetry S81.

As stated we have modified SEMI to handle real cost coefficients as opposed

to the integer cost coefficients. Generally this modification is expected to increase 0

the execution time drastically, but in this case, as Table 7 indicates this increase

was less than ten percent. Results presented in Table 7 are the average wall clock

times for three pure assignment problems, running on a Sequent Symmetry S81 0

using the floating point accelerator.

-0
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Table 1. The assignment problem with an inequality side constraint

Problem Cost/Const Side Const # of Time' Solution Guaranteed

Size Range RHS Iter (min) within % of Opt.

small 7.33 3.03 95.16
0-1000 medium 7.33 2.98 93.28

large 6.00 2.48 97.88

small 8.33 3.56 92.81
800x800 0-10000 medium 7.33 3.04 94.10

(256,000 arcs) large 6.00 2.67 98.26
small 8.33 3.62 92.56

0-100000 medium 7.33 3.05 94.14
large 6.00 2.61 98.32

small 6.00 4.26 95.17
0-1000 medium 8.33 6.43 92.39

large 6.00 4.10 97.34
small 6.00 4.42 93.60

lO00OX100 0-10000 medium 7.67 5.56 93.37
(400,000 arcs) large 6.00 4.29 97.21

small 6.00 4.51 94.60
0-100000 medium 7.67 5.72 93.60

large 6.00 4.40 97.33

small 6.67 7.70 94.42
0-1000 medium 8.33 10.00 92.35

large 5.00 5.36 99.06
small 6.67 8.18 93.69

1200x1200 0-10000 medium 8.33 10.36 95.14
(576,000 arcs) large 6.00 7.09 96.87

small 6.67 8.31 93.83
0-100000 medium 8.33 10.43 95.06

large 6.00 6.99 96.98

Times are wall clock time on a Sequent Symmetry S81 using one processor.
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Table 2. The assignment problem with an equality side constraint

Problem Cost/Const Side Const # of Time, Solution Guaranteed 0
Size Range RHS Iter (mn) within % of Opt.

very large 8.67 4.06 99.15
large 10.67 4.94 99.64

0-1000 medium 8.67 4.08 99.80
small 8.67 4.14 99.33

very small 7.67 3.45 99.44 0

very large 8.67 4.14 99.39
large 10.67 4.93 99.76

800x800 0-10000 medium 9.00 4.34 99.96
(256,000 arcs) small 9.00 4.26 100.00

very small 8.67 4.27 99.93

very large 8.67 4.16 99.64
large 10.67 5.04 99.76

0-100000 medium 8.67 4.15 99.91
small 9.33 4.42 99.95

very small 10.00 4.53 99.95

very large 9.67 7.82 99.91
large 10.33 8.32 99.76 0

0-1000 medium 8.00 6.00 99.84
small 10.33 8.07 99.79

very small 9.00 7.40 100.00

very large 10.33 8.44 99.61
large 10.33 8.49 99.84

IOOOxOOO 0-10000 medium 7.00 5.36 99.82
(400,000 arcs) small 10.67 9.06 99.53

very small 10.67 9.56 100.00

very large 10.33 8.41 99.56
large 10.67 8.50 99.78

0-100000 medium 8.00 6.40 99.77
small 10.67 8.78 99.44

very small 10.30 9.04 99.87

very large 10.00 11.93 98.55
large 9.00 10.39 99.87

0-1000 medium 9.33 11.05 99.99
small 10.33 13.02 99.43

very small 9.33 11.69 99.74

very large 9.67 10.68 98.40
large 11.00 14.21 99.82

1200x1200 0-10000 medium 8.67 11.13 99.92
(576,000 arcs) small 10.00 12.00 99.65

very small 11.00 14.18 99.71

very large 10.33 12.12 98.81
large 10.67 13.48 99.54

0-100000 medium 8.67 10.34 99.92
small 9.33 11.72 99.76

very small 11.00 14.45 99.73

I Times are wall clock time on a Sequent Symmetry S81 using one processor.
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Table 7. Comparison of the integer and real versions of pure assignment codes.
(The Weitek floating point accelerator was activated in all runs.)

Problem Size 400x400 800x800 1000x1000 1200x1200

SEMI (Secs.) 3.66 14.93 26.36 37.26
(integer)

ASSIGN+1 (Secs.) 4.00 16.38 28.37 40.71
(floating point) /

Increase for floating 9.56% 9.71% 7.62% 9.25%
point arithmetic
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V. THE SINGLY CONSTRAINED UNBALANCED ASSIGNMENT PROBLEM

Navy personnel assignment problems are unbalanced in which the number of

jobs n exceeds the number of men n. After dualizing the side constraint we obtain

an unbalanced pure assignment problem whose dual is

maximize + I :j (10)
i J

c~j - ;- j a- 0, (i, j) E E (11)

:rj _< 0, j =. (12)

The dual variable, :rj, is associated with job j and the dual variable, 2i, is associated 0

with the man i. The dual problem for the balanced assignment problem, (1)-(4) is

(10) and (11).

SEMI, the FORTRAN code used to solve the pure assignment problems in the 0

previous sections of this paper is the software implementation of a shortest aug-

menting path algorithm developed by Kennington and Wang [1990a]. The algo-

rithm is a dual method and consists of four phases: column reduction, reduction 0

transfer, row reduction augmentation, and shortest path augmentation. In each

phase both dual feasibility, cij -2-rj a: 0 for all (ij) e E and complementary

slackness xij(cij - A, - rj) = 0 for all (i,j) e E are maintained and the procedure •

works toward obtaining primal feasibility, (2) and (3). Minor modifications to

SEMI were incorporated so that :rj f 0 for all j was also maintained throughout the

four phases. The modified code is called UNBALSEMI. 9
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Table 8 presents our empirical results comparing SEMI and UNBAL_SEMI

for the assignment problem and presents results for the singly constrained unbal-

anced assignment problem. Test runs were performed on an IBM 3081D and a

Sequent Symmetry S81. Every entry in columns 2-6 of Table 8 is the average run

time for three randomly generated problems except for the entries in the last row

which are for a singly constrained unbalanced assignment problem provided by the

Navy Personnel Research and Development Center in San Diego.

By adding dummy nodes and artificial arcs, one can always convert an unbal-

anced problem to a balanced one. As shown in Table 8, the specialized code for

the unbalanced problem can run four times faster than the corresponding balanced

code. For the 400x600 assignment problems, UNBALSEMI was four times faster

than SEMI on problems in which 200 dummy men and 120,000 dummy arcs were

appended. We also find that for this application, the IBM 3081D is approximately

twice as fast as the Sequent Symmetry S81.
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Table 8. CPU times (sec.) on an IBM 3081D and wall clock times (sec.) on a
Sequent Symmetry S81 for balanced and unbalanced pure assignment
problems and singly constrained unbalanced assignment problems.

Size Assignment Assignment+1 Side Constraint

SEMID UNBAL SEMI UNBAL ASSIGN+1
BM Sequent IBM Sequent IBM Sequent

100X100 0.11 0.19 0.14 0.28 1.89 3.31

100x200 0.44 1.28 0.07 0.16 1.39 2.59

100x300 1.79 3.70 0.14 0.21 2.21 4.17

200x200 0.44 0.69 0.63 1.18 6.84 9.51

200x300 1.07 2.16 0.22 0.49 4.76 8.83

200x400 2.36 5.13 0.26 0.59 5.86 11.39

300x300 1.22 2.14 1.74 3.37 15.76 32.78

300x400 1.70 3.35 0.52 1.15 9.92 18.90

300x500 3.22 6.91 0.53 1.18 10.84 25.46

400x400 2.30 4.18 3.78 7.86 37.83 74.09

400x500 2.23 4.63 0.88 1.92 16.02 31.86

400x600 3.68 8.80 0.90 2.00 16.90 35.72

98x3622 NA NA NA NA 0.28 0.59

Total 20.56 43.16 10.04 20.39 130.50 258.74

1 dummy men nodes and artificial arcs are added to balance men and jobs.
2 real problem provided by the Navy.
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VI. SUMMARY AND CONCLUSIONS

We have presented a new algorithm, ASSIGN+1, for the singly constrained

assignment problem. This algorithm is applicable for balanced and unbalanced

assignment problems having either an inequality or an equality side constraint. The

algorithm uses Lagrangean relaxation and solves a series of pure sparse assign-

ment problems.

The empirical results of test runs of the FORTRAN implementation of the
/

algorithm for balanced problems with inequality and equality side constraints and

unbalanced problems with an inequality side constraint indicate that these three

codes are very robust and need very few iterations to satisfy the optimality criteria.

Remarkably, near optimal solutions to integer programs with over one-half million

binary variables are obtained in less than fifteen minutes on a Sequent Symmetry

S81 using a single processor. The results from test runs of ASSIGN+1, MPSX, and

OSL proves the superiority of the new algorithms over state-of-the-art general

purpose software.
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Generalized Networks:

Parallel Algorithms and an Empirical Analysis
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The objective of this research was to develop and empirically test new

simplex-based parallel algorithms for the generalized network optimization

problem. One of these algorithms is essentially a "data parallel" method

in which each processor executes identical code on a portion of the data.

(However, since the data sets are not necessarily disjoint, "locks" are used

to ensure exclusive access.) A second algorithm exhibits "control parallelism",

using different processors to simultaneously execute the different subtasks of

the simplex method. "Locks" are not needed in this second approach, but,

instead, at the beginning of each pivot, an "audit" of the proposed entering

arc is performed in order to ensure correctness of the method. These par-

allel algorithms were implemented on the Sequent Symmetry multiprocessor,

empirically tested on a variety of problems produced by two random prob-

lem generators. and compared with two leading state-of-the-art serial codes.

Good speedups were obtained relative to the serial codes, and the relative

performance of the two parallel methods was found to be dependent on con-

nectedness properties of the optimal solutions of the test problems. The largest

test problem, a generalized transportation problem having 30,000 nodes and

1.2 million arcs was optimized in approximately eleven minutes by our parallel

code, displaying a speedup of 13 on 15 processors.
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The generalized network flow problem (also called the flow with gains model) in its

most general form is defined as follows:

.n cx
x

s.t. Gz=b (GN)
O<X<u 

where G is an m x n matrix having at most two nonzero entries in each column, c is an n-

vector of costs, b is an m-vector of right-hand-sides, and u is an n-vector of upper bounds.

Associated with the matrix G is a generalized graph [N, A], where N is a set of nodes and

A is a set consisting of pairs of nodes (arcs) and (possibly) singletons (root arcs). The

nodes correspond to the rows of G and the arcs and root arcs correspond to columns of

G. (To simplify the discussion, we will use the term "arcs" to refer to both "ordinary"

arcs (which connect two nodes) and root arcs, which are incident to only one node and

correspond to columns of G with only one non-zero element.) As with the pure network

flow problem, which we designate as PN, the simplex algorithm for GN can be executed

on a graph. The graph of a basis for GN is a collection (forest) of one or more quasi-trees,

where a quasi-tree is a tree with exactly one additional arc (making it either a rooted tree

or a tree with exactly one cycle). This structural property plays an important role in one

of the parallel algorithms described below. Figure 1 shows a forest of quasi-trees.

Figure 1 A Forest of Quasi-Trees
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1. Survey and Overview

The generalized network model can be used to optimize network problems found in
the areas of investment planning, job scheduling, pure network optimization and others.

The applications axe characterized by networks for which any arc may gain or lose flow at

a linear rate assigned to that arc. Profit from interest or dividends can be modeled by a
network with gains, and loss from evaporation or seepage can be modeled by a network

with losses. A generalized network without gains or losses is a pure network. Further

discussion of applications can be found in Glover et al. [15] and Mulvey and Zenios [231.
The graphical structure of a basis for G allows the use of labeling procedures for basis

representation. Glover, Klingman, and Stutz [161 developed the first specialized primal

simplex code (NETG) which exploited this graphical structure. Many theoretical and

computational improvements have been made to this code over the last fifteen years (see

Glover et al. [15]) and Elam et al. [131). A similar implementation was also developed
in Langley [22]. Adolphson and Heum [1] presented computational results with their
generz,'ized code which used an extension of the threaded index method of Glover et al. [17].

Brown and McBride presented the details of their generalized network code (GENNET)

in [5]. Tomlin [26] developed the first assembly language code which is part of Ketron's

MI S III system. Recently, other codes have been developed by Engquist and Chang [14]),

Mulvey and Zenios [23]), and by Ali, Charnes, and Song [3]). The first parallel generalized
code was developed by Chang, Enquist, Finkel, and Meyer [9]) for the Wisconsin CRYSTAL

Multicomputer, and the second (see Clark and Meyer [11]) for the Sequent 21000, also at
the University of Wisconsin. The first C language code is discussed in Nulty and Trick

[24]. Another assembly language code is discussed in Chang, et al, [7]. The serial codes
GENFLO, a modification of GENNET, and GRNET2 are discussed in Ramamurti [25]
and Clark and Meyer [12], respectively. Computational results for these two codes will

be given in Section 3. TPGRNET, a parallel code that assigns distinct tasks to different
processes is discussed in Clark and Meyer [121 and additional results for this code are given

in Section 3. A summary of this prior software may be found in Table I.
In Section 2, a brief discussion of some strategies for parallelizing the primal sim-

plex method will be given, along with detailed discussions of two codes PGRNET and

TPGRNET. PGRNET executes pivots and computes reduced costs in parallel. TPGRNET

computes reduced costs in parallel and overlaps this with the serial execution of pivots.
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Table I Survey of generalized network codes

Code Language Authors Year

NETG FORTRAN Glover, F., Klingman, D. 1973 0
Stutz, J.

FORTRAN Langley, W. 1973

FORTRAN Adolphson, D., Heum, L. 1981

GENNET FORTRAN Brown, G., McBride, R. 1984 0

GWHIZNET ASSEMBLER Tomlin, J. 1984

GPRNET FORTRAN Engquist, M., Chang, M. 1985

LPNETG FORTRAN Mulvey, J., Zenios, S. 1985 0

FORTRAN Ali, I., Charnes, A. 1986
Song, T.

GRNET-K FORTRAN Chang, M., Engquist, M. 1987
(parallel) Finkel, R., Meyer, R. 0

PGRNET FORTRAN Clark, R., Meyer, R. 1987
(parallel) Chang, M.

GNO/PC C Nulty, W., Trick, M. 1988

GRNET-A ASSEMBLER Chang, M., Cheng, M. 1988

Chen, C.

GENFLO FORTRAN Ramamurti, M. 1989

GRNET2 FORTRAN Clark, R., Meyer, R. 1989
(serial) Chang, M.

TPGRNET FORTRAN Clark, R., Meyer, R. 1989
(parallel)

The test problems discussed in Section 3 are generated by 1) NETGEN [21], a pure

network problem generator, 2) GNETGEN, a generalized network problem generator based

on NETGEN, and 3) MAGEN [12], a generalized network problem generator based on

GTGEN [8]. 0

In Section 3, it is established that the two serial codes GRNET2 and GENFLO are

competitive with GENNET, a state-of-the art generalized network code discussed in Brown

and McBride [5]. This comparison is made by giving results for NETGEN and GNETGEN

problems. Next, results are given for TPGRNET for a group of transshipment problems
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generated by GNETGEN with up to 6,000 nodes and up to 50,000 arcs. Results are then

given for PGRNET and TPGRNET for a group of generalized transportation problems

generated by MAGEN. All of these problems have 30,000 nodes and over 320,000 arcs.

These problems are much more difficult than the GNETGEN problems in terms of both

size and the pivots/nodes ratio. In addition, the variation in the granularity of the optimal

solutions of these problems allows a good comparison to be made of the suitability of the

two parallel approaches as a function of solution granularity.
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2 SIMPLEX ALGORITHMS FOR GENERALIZED NETWORKS

2.1 Serial Primal Simplex Algorithms 0

In this section we briefly discuss the specialization of the primal simplex method for

generalized networks. A more detailed discussion can be found in Kennington and Helgason

[20] and Jensen and Barnes [19].

Input:

1. A generalized graph [N, A].

2. A cost c[a] and arc capacity u[a] for each arc a C A.

3. The constraint matrix G. •

4. A right-hand-side value b[n] for all n E N.

Output:

1. The termination type indicator3 and flow array T[a]. (/3 = 1 implies that the problem

is unbounded, / = 2 implies that the problem has no feasible solution, and/3 = 3

implies that the optimal solution is given in [a].)

The primal simplex algorithm for generalized networks can be partitioned into three

subroutines, PRICE, RATIO and UPDATE. These correspond to the computation of re-

duced costs, the ratio test, and the basis update in the simplex method for general LP's.

Each of the subroutines makes use of the block diagonal (and nearly triangular) nature of

the bases for (GN), as discussed in Adolphson [2] and Barr, Glover and Klingman [4]. The

primal simplex algorithm can be summarized as follows:

Procedure SIMPLEX

begin

1. /3-0

2. initialize duals (7r)

3. call module PRICE

4. if/3 0, then terminate

5. call module RATIO

6. if 3 0 0 terminate

7. call module UPDATE

8. goto 3. 0
end
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In module PRICE, reduced costs are computed for arcs (variables) by using the for-

mula rii = (c-rG)ij, where rii is the reduced cost for arc (i, j). The expression (c- 7rG)i

* has at most three terms, since G has at most two non-zero entries in each column. The

heuristics employed by GRNET2, PGRNET and TPGRNET to determine which arcs to

price and to use as pivots will be discussed later, and involve maintaining candidate lists

of pivot eligible arcs in very different ways. In fact, the parallel approaches, because of

* their asynchronous behavior, produce pivot sequences that would be difficult if not im-

possible to replicate in a serial algorithm. In module RATIO, the ratio test for a given

pivot-eligible arc is performed by identifying the incident quasi-trees (i.e. the incident basis

components) and following the path from each end of the arc to the (generalized) root of

0 the corresponding quasi-tree(s). As this traversal is made, the flow on the basic arcs in

the path is checked, and the arc with the "minimum ratio" is selected as the outgoing arc.

In module UPDATE, flows as well as other tree data structures are updated.

* GENFLO and GRNET2 are implementations of this algorithm, and they will be shown

to be comparable in speed. However, the two codes differ in a few ways. GENFLO is a

modification of GENNET, described in Brown and McBride [5] and it uses the GENNET

pricing strategy. This strategy involves selecting a node and pricing out all of its incident

0 arcs. GRNET2, on the other hand, scans its list of arcs linearly to locate pivot eligible

arcs and doesn't attempt to focus on the arcs that are adjacent to some node. GRNET2 is

specialized to solve problems for which at least one of the multipliers defined for each arc

is equal to 1, while GENFLO allows each arc to have two arbitrary associated multipliers.

* The latter approach is desirable in integer programming applications since scaling variables

to make one of the multipliers equal to 1 may destroy integrality. Also, reflecting an arc

to convert a negative multiplier into a 1 requires that the arcs have upper bounds. Both

GENNET and GRNET2 use the "little m" (or "gradual penalty") method [18] to find a

feasible solution. Under this method, a moderate initial cost is given to the artificial arcs,

and the resulting problem is approximately solved. Next, the cost on the artificial arcs

is increased to create a new problem, and the optimal (or nearly optimal) basic feasible

solution from the last problem is used as a warm start for the new one. This process

of gradually increasing the cost on the artificial arcs and solving a sequence of "easy"

problems can be shown empirically to yield a vast improvement over the "big M" method

in terms of the total number of pivots required to solve a problem and in terms of the

total CPU time. Some tests with GRNET2 have shown that the "little m" method is 29
D times faster than the "big M" method for large problems having only one quasi tree in the

optimal basis. GENFLO uses a simple closed-form expression to calculate the cost of the

2.-7



artificial arcs at each iteration. (The initial cost for the GENFLO artificial arcs is about

200. The cost on the artificial arcs is then roughly doubled at each step in the gradual

penalty method.) The initial cost for the GRNET2 artificial arcs is 20 (assuming that the

cost range for the regular arcs is 1-100). GRNET2 adds 5 to the cost on the artificial arcs

after each step until the cost reaches 130, then for the next two steps the increment is by

10, and for the last two steps the increment is by 20. Finally, the cost is increased to "big

M" and the problem is solved to optimality. An empirical comparison of these two codes

with each other and with MPSX, the IBM general LP code, is given below.

2.2 Parallel Simplex Algorithms

In Clark and Meyer [11] an implementation of PGRNET is discussed. This code

executes in parallel both pivots and pricing. Pivots are executed in parallel only if they •

involve updating separate quasi-trees (basis components). Even if the basis has only one

component at optimality, this algorithm behaves quite efficiently during the beginning

of the solution process, because the initial starting basis has as many components as

nodes. PGRNET is used in Clark and Meyer [11] to solve problems generated randomly by

GTGEN [81, and a code called MPGRNET is used to solve randomly generated multiperiod

problems with a block diagonal structure generated by MPGEN [6]. MPGRNET reduces

contention between processors by allocating specific quasi-trees to specific processors and

allowing processors to execute pivots involving their quasi-trees (and only their quasi-trees)

until they can find no "local" pivot eligible arcs. Optimality is then achieved by reverting

to the PGRNET algorithm. Speedups for PGRNET in Clark and Meyer [II] range from

4.8 to 8.8 on 7 processors, and speedups for MPGRNET ranged from 8.8 to 36.9 on 12

processors. The superlinear speedup for some problems led the authors to develop a serial

program that was much more efficient for the block diagonal, or "multi-period" problems.

The resulting serial timing results yielded speedup results for MPGRNET that were slightly

sublinear. An improved version of PGRNET is discussed in Clark and Meyer [12], and in

Section 2.3 below.

A number of parallel algorithms for GN are discussed in Ramamurti [25]. The "Chaotic

Column Partitioning Algorithm" (CCP) is similar to PGRNET in that it allows pivots to

be executed in parallel, provided that the pivots involve updating separate quasi-trees.

Another algorithm, known as the "Column Partitioning Algorithm" (CP) is similar to

MPGRNET. The (CCP) algorithm, the (CP) algorithm and other algorithms are applied

in Ramamurti [251 to problems generated randomly by GNETGEN, a modification of

NETGEN [21]. Speedups for the (CCP) algorithm on 8 processors range from 1.27 to

1.73, and speedups for (CP) on 8 processors range from 1.33 to 2.48.
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In Section 2.4 we discuss TPGR.NET [12], an algorithm that devotes one processor to

the task of executing pivots, and devotes all other processors to the task of computing re-

duced costs and managing candidate lists. (TPGRNET denotes "Task Parallel GRNET".)

An algorithm (the Data Partitioning Algorithm) that is similar to TPGRNET in its par-

titioning of tasks is discussed in Ramamurti [25] and is applied to a set of generalized

networks defined on grids. The advantage to having one processor do all pivoting is that

0 there is no contention between processors for shared data structures, even when there is

only one basis component in the optimal basis. This strategy yields an algorithm that is

robust in the sense that it has a behavior that does not depend heavily on the nature of

the optimal basis, and hence is appropriate for arbitrary generalized networks.

2.3 PGRNET (Parallel GRNET)

Figure 2 gives a flow chart for PGRNET. Parallel portions of the code are emphasized

by parallel lines. "l.t." designates listthreshold, a candidate list parameter.

tarlrton

set penalty NO peat YE

maecand list

-- NO

list > 1.t. ? ----

S-- .. of code-............

YE

Figure 2. Flow Chart For Parallel Algorithm PGRNET
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The (parallel) PGR.NET algorithm can be summarized as follows:

PGRNET

INITIALIZATION 0

In parallel, generate the initial flows on the artificial arcs. Divide the problem arcs

into roughly equal-sized segments for pricing in the next stage.

STAGE 1 (parallel pivoting with candidate lists) 0
Asynchronously and in parallel scan the segments of the arc set to develop multiple

candidate lists. Pivot arcs are selected from the candidate lists, and quasi-trees are

"locked" before pivots are made. (In a shared memory environment, a locking oper-

ation by a processor on the portion of the shared data corresponding to the one or •

two selected quasi-trees serves to ensure exclusive access to those quasi-trees by the

locking processor .) When, for a particular segment of the arc set, it is not possible

to develop a candidate list with more than list-threshold entries, check the penalty

on the artificial arcs. If this penalty has reached its maximum value go to STAGE 2. 0

Otherwise, assign a new value to the penalty of the artificial arcs, update the duals

in parallel and continue asynchronous pivoting.

STAGE 2 (parallel verification of optimality)

Scan the segments of the arc list in parallel to locate pivot-eligible arcs. If a pivot- 0
eligible arc is found, lock the associated quasi-trees, and execute the pivot (if the

quasi-trees were successfully locked). If an entire sweep through the segments can be

made without finding any pivot-eligible arcs, optimality has been reached.

Arcs are partitioned roughly equally among segments. If there are n arcs and P

segments, then processor 1 has arcs (1) through [n/P], processor 2 gets arcs [n/P] + 1

through [2n/P] and so forth. (A more sophisticated allocation of the non-artificial arcs

could be based on an approximation of the topology of the optimal solution. In the limiting

case, if the optimal topology is known, lock contention could be reduced significantly by

allocating to one processor all of the arcs between nodes of a given quasi-tree or group of

quasi-trees. This approach could also be used to solve perturbed problems more efficiently 0

by using the optimal topology of the base case.) The dual variables of all the nodes, the

predecessor threads, the successor threads and all other tree functions required by the

generalized network simplex method are stored in shared memory and are available to

all processors. It is important to emphasize that only the acquisition of problem data

(i.e., generating data or reading data) is done serially, and the solution process is entirely
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parallel. The number of partitions is equal to the number of processors, and all processors

execute the same code, which is almost identical to that of GRNET2. The major differences

in the parallel code are the quasi-tree locking, the "audit" of the reduced cost of the

proposed entering arcs, and the distributed dual update. The asynchronicity of the quasi-

tree locking and its effect on pivot selection make this parallel approach very difficult to

emulate on a serial computer. We now present some additional detail on this parallel
0 approach.

During a parallel pivoting stage, Stage 1, each processor makes its own candidate list

of pivot- eligible arcs from the arcs assigned to it. These candidate lists are made in the
same way that candidate lists are made in GRNET2. Each processor p chooses its next

pivot arc from its candidate list by selecting the pivot-eligible arc with the greatest reduced

cost in absolute value. If the quasi-trees at the ends of the arc have not been locked by
another processor, p locks the quasi-trees to keep other processors from interfering with

the tree update, checks the reduced cost, and, if the arc is still pivot eligible, performs the

pivot and removes the arc from the candidate list. If the quasi-trees are already locked,

or if the arc is no longer pivot eligible, processor p removes the arc from the candidate

list and chooses another arc. The dual update part of the pivot operation has also been

0 parallelized as follows: a processor traversing a quasi-tree to update duals puts roots of

"large" subtrees that are encountered on a shared queue; other processors periodically

check the queue, and when it is non-empty, take a subtree off the the queue and perform

the dual update on the subtree. When the candidate list belonging to p has no more than

list - threshold arcs, p develops a new candidate list. If the new candidate list also has

no more than list-threshold entries, processor p sets a flag in shared memory to indicate

that it is having difficulty finding pivot-eligible arcs. This flag is checked frequently by

all processors, and when it is set, processor 1 checks to see if the penalty on the artificial

arcs is big M. If the penalty is big M, all processors enter Stage 2. If the penalty is

smaller, then the processors increment the penalty on the artificial arcs and cooperate in

recomputing the dual variables. Then all processors develop new candidate lists.

Stage 2 of PGRNET corresponds to a verification of optimality stage. The verification

of optimality is done in parallel, and all processors execute the same tasks. Optimality is

achieved by performing any remaining pivots. Processors sweep through their segments

looking for pivot-eligible arcs, but no candidate lists are developed. If processor p finds a

pivot-eligible arc, it locks the quasi-trees at either end of the arc, executes the pivot, and

indicates to the other processors that they must restart their sweep (by setting flags in a

shared array). This restart mechanism is needed because a pivot executed by processor
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p might cause an arc owned by another processor to become pivot-eligible. If processor

p finds that one of the trees at the ends of a pivot-eligible arc is locked, it sets the other

processors restart flags and restarts its own sweep. Each processor checks its restart flag

frequently during Stage 2, and when a processor finds that its flag has been set, it marks

the arc in its segment that was last priced , and continues pricing. If the processor prices

all of its arcs up to the marked arc without finding any to be pivot-eligible and without

finding its restart flag to be set, that processor informs the others that none of its arcs are

pivot-eligible. Optimality is reached when all processors make a sweep through their arcs

without finding their restart flags set, and without finding any arcs that are pivot-eligible.

PGRNET is thus an example of data or uniform parallelism. The results in Section 3

show that uniform parallelism works well for generalized network flow problems in which

the number of quasi-trees in the optimal solution is not too small. 0

2.4 TPGRNET (Task-Parallel GRNET)

This algorithm is divided into two stages, with 97% of all pivots executed in Stage 1.

During Stage 1, different tasks are allocated to different processors (see Figure 3). One

processor executes all pivots, one processor selects pivot arcs for the pivoting processor,

and all other processors do pricing and place pivot eligible arcs into a shared candidate list

to be scanned by the selecting processor. If a pivot requires updating a large quasi-tree, the

pivoting processor can enlist the help of the pricing processors by putting the root nodes

of subtrees on a queue. When these root nodes are detected by the pricing processors

in the course of a periodic check, they take them off the queue and update the duals in

the corresponding subtrees. Stage 2, in which only about 3% of the pivots are done. is

analogous to that of the data-parallel PGRNET approach in that each processor scans a

segment of the arc list belonging to that processor. As in PGRNET, when a processor finds

a pivot eligible arc, it locks the quasi-trees at the ends of the arc, to temporarily exclude

all other processors from modifying those quasi-trees, checks the reduced cost, and, if it is

still pivot eligible, executes the pivot. We revert to the data parallel approach and develop

no candidate lists in Stage 2 because very few pivot eligible arcs exist at this stage. More

details of the algorithm are given below. Figure 3 illustrates the flow of information during

Stage 1, and Figure 4 gives a flow chart for TPGRNET. In both figures, dotted arrows

indicate the direction of the flow of information.
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0

The (parallel) TPGRNET algorithm is:

TPGRNET

INITIALIZATION

In parallel, generate the initial flows on the artificial arcs. Divide the problem arcs

into roughly equal-sized segments for pricing during the next stage.

STAGE 1 (parallel candidate list development overlapped with serial pivoting)

A set of candidate lists is developed and prioritized in parallel. This process is con-

tinued during the pivot, which concurrently modifies some of the duals being used in

candidate list development. When the pivot is completed, the next arc to enter the

basis is selected by using the "best" arc from the candidate list (if this arc has a suffi-

ciently good reduced cost) or a different arc (generally from the candidate lists-details

are given below) if this is not possible. The latter case occurs very infrequently, and

under conditions to be described below, may trigger an increase in the penalty cost

or an exit to Stage 2. 0

STAGE 2 (parallel pivoting and verification of optimality)

Scan the segments of the arc list in parallel to locate pivot eligible arcs. If a pivot

eligible arc is found, try to lock the associated quasi-trees, and, if the quasi-trees were 0

successfully locked, execute the pivot. If an entire sweep through the segments can

be made without finding any pivot eligible arcs, optimality has been reached.

We will now describe in detail the tasks performed by the individual processors during

Stage 1 of TPGRNET. The pricing processors have the task of computing reduced costs

and storing pivot eligible arcs in shared candidate lists of length 10. When processor p

finds a pivot eligible arc, it recomputes the reduced cost of the first element in its candidate

list to determine whether the new arc has a larger reduced cost in absolute value. If it

does, the arc number gets stored in the first element of the array, and the previous entry is

overwritten. Experience has shown that saving the previous entry yields no improvement

in efficiency. If the new arc has a smaller reduced cost than the first arc in the candidate

list, the new arc gets stored at a random location in the list. The pricing processors stay

in a loop that includes three operations. First, there is the pricing operation. This uses

most of the processor's CPU time. Second, there is a check to determine if the pivoting

processor has put a subtree on the dual-update queue (because of space limits this is not

shown in the figures). Third, there is a check to determine if Stage 1 of the algorithm has

finished. S
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The pivot selecting processor has the task of scanning the candidate lists of the pricing
processors to locate the pivot eligible arc with the largest reduced cost and storing that arc

in a single shared variable called best-cand. This processor stays in a loop that has three

operations. First, the processor checks whether best-cand is empty. If so, the processor

looks in the first entry of each of the candidate lists to find an arc to put in best-cand.

Second, the processor traverses the candidate lists to determine if there is a pivot eligible

arc that has a reduced cost larger than the arc in best-cand. Third, there is a check to

determine if Stage 1 of the algorithm is finished.

The pivoting processor stays in a loop in which it selects pivot arcs for itself (as

described below), executes pivots, and directs the increases in the penalty on the artificial

arcs. Whenever possible, the pivoting processor selects its pivot arc from best.cand, but

before accepting an arc from best-cand, an "audit" is made to determine if the arc is still
pivot eligible and if the reduced cost is sufficiently large in absolute value. (Note that the

dual variables used by the pricing or selecting processor to price the arc may have been
changed during the course of the pivot, so that an "audit" is needed to ensure that the

proposed arc still provides a "good" pivot.) If the arc in bestcand has a small reduced

cost, or if there is no arc in best-cand, the pivoting processor looks at the first entry of each

of the candidate lists to find a pivot eligible arc. If a pivot eligible arc is found, the pivot
is executed. If no pivot eligible arc is found, then either the penalty on the artificial arcs is

increased, or Stage 2 is begun (if the penalty has reached big M and cannot be increased).

The pivoting processor also has the task of directing the parallel update of dual variables

during the execution of pivots and after the penalty on the artificial variables has been
increased. During both of these operations, the pivoting processor can put the root nodes

of subtrees onto the dual update queue, and the pricing processors will then assume the

tasks of updating the duals on those subtrees.
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3 COMPUTATIONAL EXPERIENCE

3.1 Results for pure network problems

Pure networks are a special case of generalized networks (all multipliers have a magni-
tude of 1). In order to compare the efficiency of general versus specific codes, we consider
the relative performance of a general simplex code (MPSX), two generalized network codes,
and a pure network code on a class of pure network test problems. Table II gives results
for a collection of problems generated by NETGEN [21]. The problem numbers have the
prefix "N", to indicate that they were generated by NETGEN, and a numerical suffix that
indicates the standard NETGEN problem number [21]. All times are in seconds, and all
runs were made on an IBM 3081-D24. Although the number of pivots executed by MPSX
(the IBM proprietary mathematical programming system) is roughly equal to the number
of pivots executed by NETFLO [20], NETFLO is roughly 68 times faster than MPSX due
to the fact that it is designed to solve pure network problems, and it utilizes the tree struc-
ture of bases and uses integer arithmetic. GENNET uses an improved pricing strategy

that reduces the total number of pivots by a factor of three, compared to MPSX. Overall.
GENNET timings are about 54 times faster than MPSX. The timings and the number
of pivots for GENFLO are similar to those of GENNET. GENFLO solves these problems
with fewer pivots than GENNET, but CPU times are about 25% slower, possibly due to

the fact that GENFLO allows for two arbitrary multipliers. These results clearly justify
the utility of specialized generalized network software.

Table II Serial iesults for NETGEN problems (IBM 3081-D24)

Size MPSX GENFLO GENNET NETFLO

Problem nodes arcs pivots secs. pivots secs. pivots secs. pivots secs.

N15 400 4,500 2,818 30.60 1,288 1.41 1,307 1.19 2,073 0.47
N18 400 1,306 2,077 12.00 593 0.49 578 0.39 1,079 0.24
N19 400 2,443 4,229 29.40 688 0.71 765 0.53 1,305 0.23
N22 400 1,416 3,052 18.00 613 0.52 504 0.33 1.284 0.29
N23 400 2,836 7,073 57.60 492 0.47 604 0.45 1,156 0.22
N26 400 1,382 4,286 24.60 511 0.42 500 0.27 917 0.14
N27 400 2,676 11,829 95.40 628 0.55 826 0.46 1,730 0.28
N28 1,000 2,900 3,313 38.40 1,487 1.39 1,732 1.24 3,524 0.93
N29 1,000 3,400 3,744 43.80 1,889 1.59 1,996 1.18 4,570 1.12
N30 1,000 4,400 4,954 60.00 1,947 1.87 1,969 1.31 4,346 1.04
N31 1,000 4,800 6,232 81.00 2,171 2.13 2,347 1.47 4,798 1.13

N33 1,500 4,385 5,836 103.20 2,645 2.83 2,521 2.01 6,113 2.16

N34 1,500 5,107 6,503 110.40 2,498 2.50 2,943 2.10 7,640 2.37

N35 1,500 5,730 7,026 115.80 3,017 3.35 3,310 2.82 7,384 2.30

Total 72,972 820.20 20,467 20.23 21,902 15.75 47,919 12.92
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3.2 Results for GNETGEN generalized network problems

NETGEN has been modified by D. Klingman to generate generalized network flow
problems. The modified generator is called GNETGEN. Table III gives most of the GNET-

GEN input data for the small test problems G1 through G7. The prefix "G" for these

problems indicates that they were generated by GNETGEN. The numerical suffix corre-

sponds to the problem numbers in Table 2.2 in Ramamurti [251. (The random seed for all

of these problems is 13502460.)

Table III Input data for small GNETGEN problems

Problem G1 G2 G3 G4 G5 G6 G7

Nodes 200 200 200 300 400 400 1,000
Arcs 1,500 4,000 6,000 4,000 5,000 7,000 6,000

Sources 100 5 15 135 20 30 20
Sinks 100 195 50 165 100 50 100

Cost Range 1-100 1-100 1-100 1-100 1-100 1-100 1-100
Gain Range .5-1.5 .5-1.5 .25-.95 .5-1.5 .3-1.7 .5-1.5 .4-1.4

Supply 100k 100k 100k 100k 100k 100k 200k
% Capacitated 0 100 100 0 0 100 100
Bound Range - 1-2k 1-2k - - 1-2k 4-6k

IL

Table IV gives results for MPSX, GENNET and GENFLO for problems G1 through

G7. For these problems, GENNET is about 12 times faster than MPSX and GENFLO

about 11 times faster. GENFLO solves these problems with about 40% fewer pivots than

0 MPSX. Note that relaxing the assumption that one of the multipliers is unity results in an

increase in computing time of only about 10%.

Table IV Serial results for small GNETGEN problems (IBM 3081-D24)

I Size MPSX GENFLO GENNET
Prob. nodes arcs pivots secs. pivots secs. pivots secs.

G1 200 1,500 1,151 7.80 533 0.95 590 0.62
G2 200 4,000 550 3.00 358 0.23 443 0.22
G3 200 6,000 2,058 18.60 954 1.53 1,448 2.07
G4 300 4,000 4,112 47.40 2,106 4.23 2,703 3.50
G5 400 5,000 1,870 26.20 897 2.23 1,229 2.06
G6 400 7,000 1,408 16.80 1,171 1.68 1,591 1.59
G7 1,000 6,000 2,811 40.20 2,352 3.60 3,160 3.30

Total 13,960 160.00 8,371 14.45 11,164 13.36
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Tables V through VII give the input data for the larger GNETGEN problems GS
through G22. These problems are generated with the same input data as problems 1
through 15 in Table 4.1a and 4.1b in Ramamurti [25]. The problems are grouped according
to rectangularity ratios (arcs/nodes).

Table V GNETGEN problems G8-G13

Problems

Characteristics G8 G9 G10 Gil G12 G13

Nodes 2,000 2,000 2,000 4,000 4,000 4,000
Arcs 13,000 13,000 13,000 26,000 26,000 26,000

Sources 150 150 150 150 150 150
Sinks 600 600 600 600 600 600

% Capacitated 100 50 0 100 50 0 0
Cost Range 1-100 1-100 1-100 1-100 1-100 1-100

Bound Range lk-2k lk-2k - lk-2k lk-2k -

Mult. Range 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5

Table VI GNETGEN problems G14-G16 0
Problems

Characteristics G14 G15 G16

Nodes 6,000 6,000 6,000
Arcs 39,000 39,000 39,000 0

Sources 150 150 150
Sinks 600 600 600

% Capacitated 100 50 0
Cost Range 1-100 1-100 1-100

Bound Range Ik-2k lk-2k - 0
Bound Range 0.5-1.5 0.5-1.5 0.5-1.5

Table VII GNETGEN problems G17-G22
Problems 0

Characteristics G17 G18 G19 G20 G21 G22

Nodes 2,000 2,000 2,000 2,000 2,000 2,000
Arcs 25,000 25,000 25,000 50,000 50,000 50,000

Sources 150 150 150 150 150 150
Sinks 600 600 600 600 600 600

% Capacitated 100 50 0 100 50 0
Cost Range 1-100 1-100 1-100 1-100 1-100 1-100

Bound Range lk-2k lk-2k - lk-2k lk-2k -

Mult. Range 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5
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Table VIII gives a comparison of GENFLO and GRNET2 for problems G8 through
G22. The two programs give nearly the same performance for these test problems, despite
the fact that the two codes have very different pricing strategies. The number of pivots

0- for GRNET2 is about 15% less than for GENFLO, and the total time for GRNET2 on the
test problem set is about 4% less.

Table VIII Serial results for large GNETGEN problems (Sequent S81)

Size GENFLO GRNET2

Problem nodes arcs pivots time pivots time

G8 2,000 13,000 5,108 60.5 3,892 51.9
G9 2,000 13,000 4,454 44.2 3,998 46.S
G10 2,000 13,000 4,634 50.2 3,808 48.5

Gl1 4,000 26,000 9,897 125.0 7,690 121.9
G12 4,000 26,000 9,815 123.6 7,460 115.1
G13 4,000 26,000 9,145 99.3 7,375 105.2

G14 6,000 39,000 13,262 145.4 10.245 142.2
G15 6,000 39,000 12,900 126.3 10,059 158.9
G16 6,000 39,000 13,653 141.0 10,456 152.0

G17 2,000 25,000 6,186 89.2 6,369 98.0
G18 2,000 25,000 6,596 93.4 5,260 78.4
G19 2,000 25,000 6,629 119.2 5,440 81.3

G20 2,000 50,000 8,601 198.4 9,608 194.8
G21 2,000 50,000 9,208 204.5 10,343 194.9
G22 2,000 50,000 8,500 174.2 7,913 133.8

Total 128,588 1,794.4 109,916 1,723.7

Table IX gives CPU times for TPGRNET (run on various numbers of processors) for
problems G8 through G22. TPGRNET is faster than the parallel versions of GENFLO for
these test problems, and it is more robust in the sense that CPU times usually decrease
monotonically as the number of processors is increased. Hence, we report here only the
performance results for TPGRNET. The column heading "cap" denotes the percentage of
capacitated arcs, and the column heading "qtree" denotes the number of quasi-trees in the
optimal solution. The serial times reported in the table are taken from GRNET2 if they
have the "T" prefix, and they are taken from GENFLO if they have the "0" prefix. The
serial time given is always taken from the faster of the two codes. The time totals from
the bottom of Table IX are graphed in Figure 5.
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Table IX TPGRNET timings for problems G8 through G22
Number of Processors (Sequent)

Prob nds arcs cap qtree 1 5 7 9 11 13 15

G8 2k 13k 100 4 T51.9 29.3 19.8 16.2 16.3 16.9 15.8
G9 2k 13k 50 1 044.2 24.6 16.7 14.0 12.6 13.1 13.8
GI0 2k 13k 0 2 T48.5 25.2 17.5 14.2 12.9 13.2 13.3 0

G11 4k 26k 100 3 T121.9 58.3 43.8 34.3 35.6 33.8 31.8
G12 4k 26k 50 1 T115.1 61.2 41.1 36.4 33.5 31.6 31.4
G13 4k 26k 0 3 099.3 56.8 38.7 34.0 29.0 29.9 29.6

G14 6k 39k 100 5 T142.2 87.5 58.4 50.3 44.3 45.1 43.8
G15 6k 39k 50 7 0126.3 87.0 65.5 51.6 48.1 46.5 47.0
G16 6k 39k 0 2 0141.0 89.5 61.3 51.3 45.8 40.8 40.8

G17 2k 25k 100 9 089.2 39.0 25.2 20.2 19.2 18.1 16.8
G18 2k 25k 50 3 T78.4 41.3 29.8 22.5 22.5 21.2 19.0
G19 2k 25k 0 3 T81.3 41.8 25.7 21.9 18.4 18.1 18.2 0

G20 2k 50k 100 2 T194.8 77.5 49.3 44.3 35.0 34.8 33.0
G21 2k 50k 50 3 T194.9 83.4 50.8 42.2 36.5 31.7 33.5
G22 2k 50k 0 1 T133.8 64.4 44.5 37.9 32.1 32.0 27.9

Totals 1723.5 866.8 588.1 491.3 441.6 426.8 415.7
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Table X gives speedup results for problems G8 through. G22, and the results are

graphed for problems G14, G15, G16 and problems G20 ,G21, and G22. Although the

percentage of capacitated arcs has little effect on speedup for this problem class, the

rectangularity ratio is important in terms of efficiency. Problems G8-16 have the smallest

ratio of arcs to nodes, and TPGRNET yields the smallest speedup for these problems. On

the other hand, TPGRNET has an average speedup of 5.4 on 15 processors for problems

G20 , G21 and G22, which have the largest arcs/nodes ratio. Since TPGRNET achieves

most of its parallelism from pricing arcs in parallel, the dependence of the efficiency of

TPGRNET on the arcs/nodes ratio is understandable.

Table X TPGRNET speedups for problems G8 through G22

Number of Processors (Sequent)

Prob nds arcs cap qtree 1 5 7 9 11 13 15

G8 2k 13k 100 4 1.0 1.7 2.6 3.2 3.1 3.0 3.2
G9 2k 13k 50 1 1.0 1.7 2.6 3.1 3.5 3.3 3.2

G10 2k 13k 0 2 1.0 1.9 2.7 3.4 3.7 3.6 3.6

Gl1 4k 26k 100 3 1.0 2.0 2.7 3.5 3.4 3.6 3.8
G12 4k 26k 50 1 1.0 1.8 2.8 3.1 3.4 3.6 3.6
G13 4k 26k 0 3 1.0 1.7 2.5 2.9 3.4 3.3 3.3

G14 6k 39k 100 5 1.0 1.6 2.4 2.8 3.2 3.1 3.2
G15 6k 39k 50 7 1.0 1.4 1.9 2.4 2.6 2.7 2.6
G16 6k 39k 0 2 1.0 1.5 2.3 2.7 3.0 3.4 3.4

G17 2k 25k 100 9 1.0 2.2 3.5 4.4 4.6 4.9 5.3
G18 2k 25k 50 3 1.0 1.8 2.6 3.4 3.4 3.6 4.1
G19 2k 25k 0 3 1.0 1.9 3.1 3.7 4.4 4.4 4.4

G20 2k 50k 100 2 1.0 2.5 3.9 4.3 5.5 5.5 5.9
G21 2k 50k 50 3 1.0 2.3 3.8 4.6 5.3 6.1 5.8
G22 2k 50k 0 1 1.0 2.0 3.0 3.5 4.1 4.1 4.7

Averages 1.0 1.9 2.9 3.5 3.8 4.0 4.1
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3.3 Results for MAGEN Problems

Table XI gives results for a group of large problems generated by MAGEN, the genera-
* tor used in Clark and Meyer [121. This is a modification of GTGEN, a generator described

in Chang and Engquist [8]. All problems have 30,000 nodes and more than 300,000 arcs.
The precise MAGEN input data for these problems, as well as optimal objective function
values are given in Clark [101. MAGEN generates random bipartite generalized network
problems, but allows the user to specify, roughly, the granularity of the generated problem,

* (i.e., the user may adjust the number of quasi-trees in the optimal basis). Since problems
4.00 through 4.50 have very different granularities, the effect of granularity on the efficiency
of TPGRNET and PGRNET can be studied by solving these problems. Although MAGEN
was motivated by the need to compare parallel methods whose performance was depen-
dent on test problem structue, it should also be noted that even from a serial computing

*0 viewpoint, granularity has a significant impact on solution time. For example, GRNET2
solves 4.50 sixteen times faster than 4.00, even though it does only 30% fewer pivots.
This means that the pivots in 4.50 are relatively fast, due to the fact that quasi-trees are
smaller on average than those of problem 4.0. PGRNET yields an impressive speedup of
11.1 over GRNET2 for 4.50, because the quasi-trees are numerous in the optimal basis
(and in the intermediate bases). The serial version of GENFLO outperforms GRNET2 on
problem 4.50 in terms of CPU time, but GRNET2 significantly outperforms GENFLO for
the more difficult problems in terms of both CPU time and the number of pivots. Looking
at problem 4.00, one sees that the fastest serial algorithm is GRNET2, and the fastest
parallel algorithm is TPGRNET. The shared candidate list and parallel pricing strategy

* of TPGRNET makes TPGRNET outperform PGRNET in terms of the number of pivots
for all problems, but, except for problem 4.00, this cannot compensate for the parallel
pivoting of PGRNET. In all of the other problems, PGRNET outperforms TPGRNET in
terms of CPU time because PGRNET executes pivots in parallel.

Table XI Results for PGRNET, TPGRNET, GENFLO. and GRNET2

Problem # 4.00 4.01 4.03 4.05 1 4.10 4.50

# qtrees at optimality 1 139 459 776 1,490 7,376
nodes 30,000 30,000 30,000 30,000 30,000 30.000

# arcs 322,289 322,428 322,748 323.065 323,779 329.665
# pivots GENFLO * 411,720 337,907 313,982 289,937 244,635
# pivots GRNET2 328,711 347,420 320,937 308,284 288,856 22S,819

# pivs 19 procs PGRNET 365,633 383,483 345,325 326,323 300,496 231,507
# pivs 19 procs TPGRNET 265,774 305,979 288,279 272,322 263,411 221,544

CPU secs. GENFLO 36,523 10,524 5,121 2,436 1,038
CPU secs. GRNET2 22,434 9,679 4,525 3,096 2,340 1,388

CPU: 19 procs PGRNET 5,829 1,527 589 364 223 124
CPU: 19 procs TPGRNET 3,390 2,571 1,177 721 470 211

Speedup PGRNET 3.8 6.3 7.6 5.2 10.4 11.1
Speedup TPGRNET 6.6 3.7 3.8 4.2 4.9 6.5

*** Did not finish after 14 hours.
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Figure 7 Speedups for PGRNET and TPGRNET for MAGEN problems

Figure 8 and Tables XII and XIII show results for two problems with more than a

million variables. The problem reported in Table XII has tighter capacity constraints than

does the Table XIII problem. Both of these problem, are small grained, so they can be solved

quite efficiently by PGRNET. The best speedup was achieved on the tightly constrained

problem for which a speedup of 13 was achieved using 15 processors. Note that the tightly

constrained problem was considerably more difficult to solve with the serial version of the

code, so that there was more potential for improvement with a parallel approach.
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Table XII PGRNET results for tightly constrained problem

program I  # arcs # nodes # qtrees time pivots maj page swap

serial 1,267,185 30,000 14,859 8,415 706,776 914,478
15 procs 1,267,185 30,000 14,859 660 715,168 101,866

Table XIII PGRNET results for loosely constrained problem

program # arcs # nodes # qtrees time pivots maj page swap

serial 1,267,185 30,000 14,859 3,305 184,379 363,755
15 procs 1,267,185 30,000 14,859 490 186,969 45,672
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4. SUMMARY AND CONCLUSIONS

0

The availability of powerful parallel computers has generated widespread interest in

the development of new optimization algorithms for such machines. The parallel algorithms

and software reported in this investigation demonstrate the effectiveness of these advanced

computers for the optimization of generalized networks. Although these methods were 0
developed and tested for a particular multiprocessor system with shared memory (Sequent

Symmetry S81), they can be used with any shared memory parallel processing system.

In our empirical study we found that our serial network software is at least forty times

faster than MPSX for pure network problems and is at least an order of magnitude faster 0

than MPSX for generalized networks. We also demonstrated that relaxing the restriction

that at least one of the multipliers associated with an arc be +1 results in an additional

computational expense of only ten percent.

We believe that the best current serial software for these problems is GENNET [5] and

GRNET2 [121 and we began our study of parallel algorithms with these codes. GENFLO (a

two-multiplier version of GENNET) and GRNET2 provided the best single processor times

for the empirical analysis presented in this study. For a comparison with parallel codes,

both codes were run and the smaller serial time was used in speedup calculations for the

parallel codes. In order to assess the effectiveness of our parallel approaches, we considered

generalized networks with a large range of connectedness in optimal solutions, since this

structure was a key factor in parallel efficiency. The data-parallel PGRNET method proved

to be more efficient on problems with many quasi-trees in the optimal solution, while the

control-parallel TPGRNET algorithm was more effective on problems with relatively few

quasi-trees. The best speedup was achieved on a tightly constrained problem having 30.000

nodes and over 1.2 million arcs. For this problem PGRNET achieved , speedup of thirteen

on fifteen processors. Clearly, the lower speedups reported here for problems with small

numbers of quasi-trees in the optimal solutions indicate that both parallel approaches

encountered difficulties in such cases in terms of scale-up to larger numbers of processors,

in the sense that little improvement is demonstrated as the number of processors increases

beyond 10. One extension that we are currently investigating to more effectively utilize

additional processors in a control-parallel approach is to employ them as "ratio processors"

that perform ratio tests (or approximations to ratio tests) on candidate arcs generated by

the pivoting processors. Particularly in the case of difficult problems in which the number

of pivots is large relative to the number of nodes and arcs, this approach holds the promise
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of increasing speedups by significantly reducing the total number of pivots. Another future

area of research that we will be pursuing is the investigation of the extension of the control-

parallel approach to general linear programs. Clearly, the allocation of tasks to processors

for the general simplex method can be done in the same manner as TPGRNET. Relevant

issues include the effect of increased pricing and pivoting times for general linear programs,

alternatives to full ratio tests in the case that ratio processors are utilized, and the effect

of increased data dependency of the pricing and pivoting tasks.

ACKNOWLEDGMENTS
This research was supported in part by NSF grants CCR-8709952 and CCR-8907671,

the Air Force Office of Scientific Research under grants AFOSR-87-0199 and 89-0410 ,

the Department of Defense under contract number MDA 903-86-C0182, and the Office of

Naval Research under contract number N00014-87-K-0223.

C-27



References

1. D. Adolphson and L. Heum, 1981. Computational experiments on a threaded index

generalized network code, ORSA/TIMS Joint National Meeting Houston, Texas.

2. D. Adolphson, 1982. Design of primal simplex generalized network codes using a

preorder thread index, Working Paper, School of Management, Brigham Young Uni-
versity, Provo, Utah. 0

3. I. Ali, A. Charnes and T. Song, 1986. Design and implementation of data structures

for generalized networks, Journal of Information and Optimization Sciences 7

81-104.

4. R. Barr, F. Glover and D. Klingman, 1979. Enhancements of spanning tree labeling

procedures for network optimization, INFOR 17, 16-34.

5. G. Brown and R. McBride, 1984. Solving generalized networks, Management Sci-
ence 30, 1497-1523.

6. M. Chang, 1986. A parallel primal simplex variant for generalized networks, Ph.D.

thesis, University of Texas at Austin.

7. M. Chang, M. Cheng and C. Chen, 1988. Implementation of new labeling procedures
for generalized networks, Technical Report, Department of CS/OR, North Dakota

State University, Fargo, North Dakota.

8. M. Chang and M. Engquist, 1986. A parallel algorithm for generalized networks, 0

Annals of Operations Research 14, 125-145.

9. M. Chang, M. Engquist, R. Finkel and R. Meyer, 1988. On the number of quasi-trees

in an optimal generalized network basis, COAL Newsletter 14, 5-9.

10. R. Clark, 1989. The efficient parallel solution of generalized network flow problems,

Ph.D. thesis, University of Wisconsin-Madison.

11. R. Clark and R. Meyer, 1987. Multiprocessor algorithms for generalized network

flows, Technical Report #739, Department of Computer Sciences, University of

Wisconsin-Madison.

12. R. Clark and R. Meyer, 1990 Parallel arc-allocation algorithms for optimizing gener-

alized networks, Annals of Operations Research 22, 129-160.

C-23



13. J. Elam, F. Glover and D. Klingman, 1979. A strongly convergent primal simple:

algorithm for generalized networks, Mathematics of Operations Research 4, 39-

59.

14. M. Engquist and M. Chang, 1985. New labeling procedures for the basis graph in

generalized networks, Operations Research Letters 4, 151-155.

15. F. Glover; J. Hultz, D. Klingman and J. Stutz, 1978. Generalized networks: A funda-
mental computer based planning tool, Management Science 24, 1209-1220.

16. P. Glover, D. Klingman and J. Stutz, 1973. Extension of the augmented predecessor
index method to generalized network problems, Transportation Science 7, 377-384.

0 17. F. Glover, D. Klingman and J. Stutz, 1974. The augmented threaded index method

for network optimization, INFOR 12, 293-298.

18. M. Grigoriadis, 1984. An efficient implementation of the network simplex method.

Mathematical Programming Study 26, 83-111.

19. P. Jensen and J. Barnes, 1980. Network Flow Programming, John Wiley and Sons,

New York.

20. J. Kennington and R. Helgason, 1980. Algorithms for Network Flow Programming,
John Wiley and Sons, New York.

21. D. Klingman, A. Napier and J. Stutz, 1974. NETGEN: A program for generating

large scale capacitated assignment, transportation, and minimum cost flow problems,

Management Science 20, 814-821.

22. W. Langley, 1973. Continuous and integer generalized flow problems, Ph.D. thesis,

Department of Industrial and Systems Engineering, Georgia Institute of Technology,

Atlanta, Georgia.

23. J. Mulvey and S. Zenios, 1985. Solving large scale generalized networks, Journal of

Information and Optimization Sciences 6, 95-112.

24. W. Nulty and M. Trick, 1988. GNO/PC Generalized network optimization system,

Operations Research Letters 7, 101-102.

25. M. Ramamurti, 1989. Parallel algorithms for generalized networks, Ph.D. thesis, De-

partment of Operations Research and Engineering Management, Southern Methodist

University, Dallas, Texas.

26. J. Tomlin, 1984. Solving generalized network models in a general purpose mathematical

programming system, ORSA/TIMS Joint National Meeting Dallas,TX.

C-29



Computational Comparison of Sequential and Parallel Algorithms
For the One-to-One Shortest-Path Problem

Richard V. Helgason t
Jeffery L. Kennington t

B. Douglas Stewart +

Four new shortest-path algorithms, two sequential and two parallel, for the source to sink shortest-
path problem are presented and empirically compared with five algorithms previously discussed
in the literature. The new algorithm, S22, combines the highly effective data structure of the
S2 algorithm of Dial, Glover, Karney, and Klingman, with the idea of simultaneously building
shortest-path trees from both source and sink nodes, and was found to be the fastest sequential
shortest-path algorithm. The new parallel algorithm, PS22, is based on S22 and is the best of the
parallel algorithms. We also present results for three new S22-type shortest-path heuristics. These
heuristics find very good (often optimal) paths much faster than the best shortest-path algorithm.

Since the late fifties when its first solution methods were developed, the shortest-path problem has

become one of the fundamental problems in the areas of combinatorial optimization, computer science, and

operations research. Algorithms and applications are commonly found in the important books in these areas

(see for example Berge and Ghouila-Houri (1962), Bertsekas and Gallager (1987), Even (1979), Hu (19S2),

Jensen and Barnes (1980), Lawler (1987), Papadimitriou and Steiglitz (1987), Quinn (1984), Rockafellar

(1984), and Tarjan (1983)). The study of this problem has been motivated by both its elegant mathematical

structure and its many practical applications. Our recent interest in this problem was occasioned by the

need to solve shortest-path subproblems in several mathematical optimization procedures we are developing

in an MIMD parallel computing environment.

Excellent surveys of the many shortest-path problem variations may be found in Deo and Pang (1984)

and Gallo and Pallottino (19S6). A survey of techniques and computational comparisons may be found in

Gallo and Pallottino (1988), in Dial, Glover, Karney, and Klingman (1977) and (1979), in Klingman. Mote,

and Whitman (1978), in Glover, Glover, and Klingman (1984), in Desrochers (1987), and in Divoky (1987).

The methods are grouped into two general classes: lael-sefting algorithms and label-correcting algoriihms.

Dijkstra (1959) is credited with the first label-setting algorithm and any algorithm that uses this approach

has been considered a particular implementation of Dijkstra's original algorithm (see Gallo and Pallottino

(1986)).

Typically, the shortest-path problem is one that requires the shortest-path from a single source node, say

s, to all other nodes in a network. The solution can be represented as a shortest-path tree rooted at s. In this

paper we are concerned with the problem of finding the shortest-path between a source node and a sink node,

t. Dantzig (1960) suggested that a pair of trees be built with one rooted at s and the other rooted at t. No

stopping criteria were given. This strategy also appears in the book by Berge and Ghouila-Houri (1962) with

an incorrect stopping criterion. Nicholson (1966) was the frst to present a correct analysis of the Dijkstra

two-tree algorithm. Hart, Nilsson, and Raphael (1968) presented a one-tree algorithm utilizing heuristic
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cost functions. They included the case in which lower bounds on distances between nodes are available and

proved that optimal paths are obtained. Pohl (1971) extended these results for the bi-directional algorithm,

antedating Mohr and Pasche (1988), who presented similar results. Additional discussion may be found in

the survey by Dreyfus (1969), where he conjectured that building trees from s and t would be ineffective for

this problem.

Few empirical studies have been reported in the literature for the two-tree algorithms. Pohl (1969)

presented results that have received little recognition, and no further studies appear until recently. Helgasop,

Kennington, and Stewart (1988) solved shortest-path problems on twelve NETGEN networks and twelve

dense bipartite graphs using a two-tree Dijkstra algorithm. Mohr and Pasche (1988) solved for shortest-patns

in three grid networks and a network representing a road map of Switzerland, using the two-tree Dijkstra

algorithm as well as their version of the two-tree algorithm for networks with lower bounds available. They

also simulated results for parallel algorithms if two processors were available.

The motivation for this study was to implement two-tree algorithms using more efficient data structures

than the classical Dijkstra algorithm, and to actually solve shortest-path problems using two processors.

Four new algorithms were developed: sequential and parallel two-tree algorithms based on Dial (1969) (the

S1 code in Dial et al. (1979)), and sequential and parallel two-tree algorithms based on the S2 code in Dial

et al. (1979). These codes are compared with the classical Dijkstra, S1, S2, two-tree Dijkstra, and parallel

two-tree Dijkstra codes.

While performing this study, it was noted that the two-tree S2 algorithm finds "good" paths quickly.

Three heuristic path algorithms were developed by simply stopping early while executing the two-tree S2

algorithm. Often times these heuristics find a shortest-path, although they do not prove it is so, and these

paths are found much faster than the fastest optimal algorithm. We present computation times as well as

measures of closeness to optimality for these heuristics.

1. THE ALGORITHMS

This section presents the definitions, notation, and nine algorithms representing the codes used in our

computational study. The notation and presentation are based on that found in Gallo and Pallattino (1986).

The input for each algorithm is a directed graph G = [N,A] with a node set N and an arc set A. Associated

with each arc (i, j) E A is a length 1ii. A shortest-path is desired between two nodes s and t and it is

assumed that such a path exists. We also assume for all algorithms that 1ij 0 for all (i,j) E A. For

efficient implementation it is assumed that G is given in the form of arc-lists. Specifically, the forward star

for node u E N, FS(u), is the set of all arcs (u,j) E A. Six algorithms require a backward star, BS(v),

defined as the set of all arcs (i, v) E A for node v E N.

The basic working entities of each algorithm include a set of labels, du, for node distances from the root

of a shortest-path tree T, a set of predecessors, pu, for nodes in the tree, and the set of candidate nodes,

Q. In the algorithms based on the SI and S2 algorithms, the set Q will be divided into subsets, or buckets,

that will contain candidate nodes that are the same distance from the root node. This requires that each
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arc length be integer to correspond to an index. For ease of presentation, we will let r be the set of indices,

10,..., lmaz} for the buckets of Q, where Imax = max{l,, : (u,v) E A}. The notation will be modified for

the bi-directional algorithms by using the superscripts s or t to indicate the root of the tree. The algorithms

terminate with the length of the shortest-path from s to t and a small set of nodes, J, used to identify a

shortest-path. A shortest-path from s to t is implicit in the predecessor labels.

1.1 The classical Dijkstra algorithm

Dijkstra's classical algorithm (1959) begins at node s and builds a shortest-path tree T in which the

shortest-path from s to any node in the tree is known. When node t is placed in the tree we have a minimum

length directed path from s to t and may terminate. As mentioned before, the algorithms discussed here

differ in the way the candidate nodes are placed in and retrieved from the set Q. The implementation here

for the classical Dijkstra algorithm (Dl) searches the list of candidate nodes, Q, for minimum label nodes

and places all such nodes in the set R. Then all the nodes in R can be scanned one after the other. When

there are many nodes tied with the minimum label, searches are avoided with only minimal effort. The

algorithm may be stated as follows:

Procedure D1(s, t)
begin

initialize:pi - O, dj o--o for all i E N; Q - 0;

d, - 0,p, -s,R - {s},T - ;
while t R

for each u E R do
for each (u, v) E FS(u) such that du + lu, < do

d,. -du +tI.;

-U U;

if v0Q then Q-QU{v};
endT - TU {u};

end
comment: search Q for minimum label nodes and place in R
a - min{d : i E Q},R - {i d=a}, Q - Q\R;

endwhile
end

1.2 The S1 algorithm 0

This one-tree algorithm is implemented as proposed by Dial (1969). As in algorithm D1, it selects a

minimum label node to scan each iteration, but the nodes in Q are stored in buckets according to their

distance labels. More specifically, Imax + 1 buckets are required, where Imax = max{l,. : (u, v) E Al and

a node u is stored in bucket z if d = z(mod Lmaz + 1). Only nodes with equal distance labels will be in

bucket z and only imaz + 1 buckets are required, because for a node u with minimum label, we have that

for each v E Q, du _ d. 5_ d, + Imax. The buckets are implemented efficiently as two-way linked-lists. From

minimumn label node u, the next non-empty bucket contains the next minimum label node(s) and the effort

to search an entire list as in algorithm DI is greatly reduced. The trade-off is increased effort managing
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the two-way linked-list each time a node has an improved distance label. The algorithm may be stated as

follows:
Procedure S1(s, t)

begin
initialize:

pi ,- 0,di ,- oo for all i E N; Q, -0 for z = I, ... ,mar;
Qo - {s}, d, -- Op - s, T - 0;

while t 0 T
let z be the next index such that Q, 9 0;
for each u E Q, do

Q, - Q\{u);
for each (u, v) E FS(u) such that du + lu, < d, do

a -- dt,(mod Imax + 1);d. --du, + 1u,.;
b -- 4(mod lmaz+ 1);
Pv - ;

Qb -Qb U {v};
end
T-TU{u};

end
endwhile

end

1.3 The 52 algorithm

This one-tree algorithm is based on an idea due to Dantzig (1960) and the implementation here is due

to Dial et al. (1977). It requires that each FS(u) for all u E N be sorted in shortest first order. Given this,

the observation can be made that the entire forward star of a node u need not be scanned all at once in that

the node, say v, that is first updated will have a distance label less than or equal to any subsequent nodes

updated from node u. The node v is placed on a one-way linked-list, paired with u, at a level du + ,,. In

stating the algorithm bclow, we use k(u) as a counter to point to the next arc in FS(u) to be scanned. The

node wt(u) is the corresponding node of this arc. The length of each forward arc-list is given by h(u). It

should be noted that the actual implementation does not use a counter. A simple minus sign in the forward

star array can indicate the next arc to be scanned.

Nodes may be duplicated on the linked-list, therefore no deleting is required. Even so, the number of

nodes on the linked-list will not exceed the total number of nodes since only one per scanned node is allowed.

Q is searched as in algorithm S1 for the next non-empty bucket and minimum label node. If the node's

paired predecessor is not its current predecessor, the node is already in the shortest-path tree and may be

discarded. The algorithm may be stated as follows (see Galo and Pallottino (1986)):
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Procedure $2(s, t)
begin

initialize:
pi "- O, di - o, k(i) - 1, h(i) = IFS(i)I for all i E N;
Q, --0 for z = 1,..., Imax; Qo - {s}, d, -O,p, -s, T-0;

while t 0 T
let z be the next index such that Q, # 0;
for each u E Q, do

comment: determine next node in FS(u)
V *- Wk(U);

Q. - Q'\{U};

comment: determine new candidate arc
INSERT(u);
T .- TU {u};
if v 0 Q then INSERT(v);

end
endwhile

end
Procedure INSERT(z)

begin
k(z) - k(z) + 1;

while k(x) < h(z) and d_ + Iy >_ d do S
k(x) - k(x) + 1;
Y *- wk(r);

endwhile
if k(z) < h(x) then

p .--z

-- d + 1 l ; +
a - d,(mod Imaz + 1),
Qo - Q U{x};

endif
end

1.4 The two-tree Dijkstra algorithm

The two-tree Dijkstra algorithm builds a pair of shortest-path trees, one from s and oae from t. The

tree rooted at t is analogous to the one rooted at s, but scans backward stars, and its predecessors are the

heads of arcs rather than tails. The two trees are grown in alternate steps and t¢:rnination is triggered

when a node appears in both trees. It should be noted however that the node appearing in both trees is not 0

necessarily on a shortest-path (see Nicholson (1966) for a proof of termination criteria). Testing on random

graphs showed that about 72% of the time this node will be on the shortest-path. A search is performed

over nodes in both trees to find a node, say r, such that d, + &, is a minimum. A shortest-path from s to t

may be found by following predecessors from r to s and from r to f in each tree, respectively. We define J

as the set of nodes which can be used to identify a shortest-path. The algorithm requires twice the storage

of algorithm DI and may be stated as follows:
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Procedure D2(s,t)
begin

initialize:
p --O,d - o for all i E N; Q--0;
ds - O,p X- sT' - 0,R' - {s);
p! - Odf - o for all i E N; Qt 0;dt - 0,Pt - t,TV - 0, R'.-{;

while T n T t = O do
for each u E R' do

for each (u, v) E FS(u) such that d + 1,. < df dod-' -- d-' + 1,,,;

if v Q' then Q' - Q' U {v};
end
T' -- T U {u};

end
comment: search Q for minimum label nodes and place in R'a -- minfd : i E Q-}, R - {i: dij=a}, Q4 - Qj\R';

for each v E R' do
for each (u, v) E BS(v) such that dv + lu, < du do

&- v;

if v Q' then Qt - Q1 U {u};
end

-~ -TU{v};
end
comment: search Q1 for minimum label nodes and place in R
a - min{d! : i E Q'}, R' -- {i: d=a}, Q1 - Q'\Rt;

endwhile
comment: stopping criterion met
0 - min{d! + d! :i E Ts UT};
J -iETUT t :d +dj=O};

end

1.5 The two-tree S1 algorithm

The two-tree S1 algorithm builds a pair of shortest-path trees, one from s and one from t, using Si data

structures for each tree. As in algorithm D2, termination is triggered when a node is first found to be in

both trees. The node r such that dsr + d, is minimum gives the shortest-distance from s to t and lies on a

shortest-path. The algorithm requires twice the storage of Si and may be stated as follows:

Procedure S12(s,t)
begin

initialize:
pi- 0, df - 00 for all i E N; Q8 4-- 0 for z = i,...,maz;Q*o -(f}, d:, O,p: - s, T" 0;
p-O, ,-- oo for all i E N; Q' ,- 0 for z ,...,Imaz;
Qt - {i}, Ot - o, - t' V-1 0;
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while T, fi' = do
let z be the next index such that Q8 , ;
for each u E Q', do

Q. -Q'.\u};
for each (u, v) E FS(u) such that du + 4u, < d, do

a 4- d,(mod lmaz + 1);
d, - du" + 1u.;
b +.- d,(mod lmaz + 1);

end
T' - T u {u};

end
let z be the next index such that Qt 0 0;
for each v E Q' do

I - Q'\{\V};
for each (u, v) E BS(v) such that d, + lu, < du do •

a - du (mod lmazx + 1);
&U- d. + I..;

b - du(mod Imax + 1);
Up 4-- v;

Q, .- Q'\ I U;
Qt .- Q, u {u};

end
V" -T7'U {v};

end
endwhile
comment: stopping criterion met
# ,- min{d! + d! i E T' U T};
J - {i T'UT' :df + &d=);

end

1.6 The two-tree S2 algorithm

As in the previous two-tree algorithms, the two-tree S2 algorithm uses mirror S2 data structures to build

two shortest-path trees. At first one would expect the stopping procedure to be the same as in the previous 0

two-tree algorithms, namely, when a node is in both trees, find the minimum d! + &i for all i E TP U 7".

However, at the time a node is first placed in its second tree, we are not quite ready to search for such a

minimum doubly labelled node. In Nicholson (1966) such a node is proven to be on a shortest-path because

each node in both trees has had its arc-list fully scanned. In the 52 implementation for each tree this is S

not the case. In fact, this is the advantage of the one-tree S2 algorithm. In two directions we must perform

additional scanning to meet the Nicholson criterion, however, we will not need to manage the linked-lists.

All that is needed is to update distance labels and predecessors. Actually we need only scan a subset of arcs

from each arc-list. Nicholson proves that any node that is not in either tree when a node is first in both trees

will not be on a shortest-path. If arcs were scanned to these nodes, they would still not be in either tree or

on a shortest-path, so updating their distance labels would be wasted effort. These nodes also make up the

majority of the arc-lists. The only arcs that need to be scanned during the mnop-up" phase are those arcs

that have from nodes in one tree and to nodes in the other tree. Since these arcs may be scanned from either S
node, it is more efficient to consider these arcs from the nodes in the smaller tree. After updating distance
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labels and predecessors we are ready to search for the minimum doubly labelled node to find our minimum

distance from s to t and a shortest-path. The algorithm may be stated as follows:

Procedure S22(s,t)
begin

initialize:
pi- 0,d! - oo, fk(i) - 1,fh(i) = IFS(i)l for all i E N;

Q; ,-0for z = 1, ..., Im ax; Q - -- s), d: -- 0, p , T' -- 0;

p-- 0, d! - oo, bk(i) - 1, bh(i) = IBS(i)I for all i E N;
Q 1 - 0 for : = 1, ..., I max; Q tO  -.{t}, dt - 0, p -t , T7 - 0;

while T' nl T ' = 0 do
let z be the next index such that Q # 0;
for each u E Q,' do

comment: determine next node in FS(u)
v - W1k(u);

QZ - Q Z,.\{fU};
comment: determine new candidate arc
SINSERT(u);
T - Ts U {u};
if v 0 Qs then SINSERT(v);

end
let z be the next index such that Q, # 0;
for each v E Q, do

comment: determine next node in BS(u)
U - Wbk(v);

Q1, - QlIV;
comment: determine new candidate arc
TINSERtT(v);
V -V U {v};
if u Q' then TINSERT(u);

end
endwhile
comment: mop-up phase from smaller tree
if IT'I < 1T'i then

for each u E T do
for each (u, Y) E FS(u) do

if y E V then
if d& + Iu, < dy then

d- dJ + 4l;p, '-u

endif
endif

end
end

else
for each v E T' do

for each (w, v) E BS(v) do
if w E T' then

if dt + I., < dc, thend. d, + I..;
p" "V;

endif
endif

end
end

endif



comment: stopping criterion met
3.- minjd +d : i E T UT7};

J -{iET'UP : di + d=/};
end

Procedure SINSERT(z)
begin

f k(.r) - f k(--) + 1;
Y -" Wlk(z);

while f k(x) < fh(z) and dL + Iy. > d; do

f k(x) - f k(x) + 1;
Y -W k(=);

endwhile
if fk(z) < fh(z) thenP a 4-- X;

a 4- d,(mod imax + 1); S
Qa - Q fU{Z};

endif
end

Procedure TINSERT(z)
begin

bk(x) - bk(z) + 1;
y - wbk(x);

while bk(z) < bh(z) and d' + l > dY do

bk(z) - bk(z) + 1;
Y - Wb(x);

endwhile
if bk(z) < bh(x) then

a.- d;(mod Imax + 1); S
Q.'- Q'. U {x};

endif
end

1.7 The parallel two-tree Dijkstra algorithm

It is readily observed that in the two-tree shortest-path algorithms, the trees are independent of each

other. The only requirement is to check whether or not a node is in the opposite tree. This read-only step

causes no interference using multiple processors. This leads to the simplest asynchronous parallel application

using two processors, one for each tree. When one processor recognizes that a node is in both trees, it sets a S

flag to tell the other processor to find the minimum doubly labelled node in its tree while it does the same.

The minimum of the two is the minimum path distance from s to t. Again, a shortest-path is implicit in

the predecessor labels beginning with the minimum doubly labelled node. In the algorithms below, each

processor has its own indentifying number called procid. The parallel processing construct called fork(2)
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indicates that two processors are to be used to execute the sections until the join construct is reached. The

algorithm may be stated as follows:

Procedure PD2(s,t)

begin
flag +- 0;
comment: begin use of two processors
fork(2)
if procid = 1 then

initialize:
p4 - 0,d - oo for all i E N; Q" -;
d' , - 0,p3 s, s - , - {s;

synchronize processors
while flag = 0 do

for each u E R' do
for each (u, v) E FS(u) such that d. + 1,. < d, do

d' - d'u + lu,;
_- ps. - U;

if v Q' then Q' - QS U {v};
end
Ts - T' U {u};
if u E T' then flag - 1;

end

comment: search Q3 for minimum label nodes and place in R'
a -- min fdi : i E Q-}, R' - I{i : d!=a}, Q-' -\Rj;

endwhile
, - min{d + di: i E T};

endif
if procid = 2 then

initialize:
p! -0, di -oo for all i E N; Q' -;d, 0,p,'- t,TI' - 0,R' -I}

synchronize processors
while flag = 0 do

for each v E Rt do
for each (u, v) E BS(v) such that d' + lu, < dtu do

-d' + I.,;
pu' - o
if v E Qt then Qt - Qt U {u};

end
Tt - Tt U {v};
if v E T' then flag - 1;

end
comment: search Q' for minimum label nodes and place in R'
a -- min{di : i E Q'}, R' -- {i: d:=a},Q' Q\R';

endwhile
pt -- min{d! + di : i E V};

endif
comment: end use of multiple processors
join processors0 - min{#.,,3,};
J {i E T" u L : dt + d =};

end
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1.8 The parallel two-tree S1 algorithm

The parallel two-tree S1 algorithm is similar to the parallel two-tree Dijkstra algorithm. Each processor

is assigned one of the nodes, s or t, and builds a tree using the S1 data structure. When a node is found to be

in both trees, a flag is set to tell both processors to find the minimum doubly labelled node in its respective

tree. The minimum of these two gives the minimum distance path from s to t with a path implici, in the

predecessor labels. The algorithm may be stated as follows:

Procedure PS12(s,t)
begin

flag - 0;
comment: begin use of two processors
fork(2)
if procid = 1 then

initialize:
pi - 0, df -o for all i E N; Q3 ._0 for = 1,...,!maz; S
Q"- {s}, d; - 0,p- s, T-;

synchronize processors
while flag = 0 do

let z be the next index such that Q' , 0;
for each u E Q' do
Q! - Q.'\{u}; S
for each (u, v) E FS(u) such that df + lu, < d' do

a - d,(mod imax + 1);
d-, - du + l
b - d,(mod Imax + 1);

-P U:
-Q Qa \{v};

end
T" - T' U {u};
if u E T' then flag ,- 1;

end
endwhile
,8, - min{d! + di : i E T'};

endif

if procid = 2 then
initialize:

p! - 0, d - oo for all i E N; Q -0 forz= 1, ... ,Imax;
' - {t}, d' - O,p' - t, Tn - 0;

synchronize processors •
while flag = 0 do

let z be the next index such that Q' A 0;
for each v E Q' doQ" - Q" \{I};

for each (u, v) E BS(v) such that d + 1,. < d'u do
a .- du(mod imax + 1);
d' - +uu;
b +- d,(mod lmaz + 1);
p ,- v;

end
T' - T'U J{v};
if v E T' then flag - 1;
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end
endwhile
, - min(d + di: i E T'};

endif
comment: end use of multiple processors
join processors
#3- min{3,,)3t};
J1 {i E T' u7: dl + di=0};

end

1.9 The parallel two-tree S2 algorithm

As in the previous parallel algorithms, the parallel two-tree S2 algorithm assigns one pzucessor to work

on the tree rooted at s and another processor to work on the tree rooted at t. When a node first appears in

both trees, a flag is set to initiate the mop-up node scanning phase. As explained in Section 1.6. we perform

the mop-up scanning phase from the smaller tree only. To perform this work with two processors requires

each one to share the same data, namely, distance labels. To prevent possible interference with each other,

parallel processing constructs called locks are used so only one processor at a time may update a distance

label. Following this, the processors are synchronized and the minimum doubly labelled nodes are found for

each tree. The minimum of these two gives the minimum distance path from s to t and a shortest-path is

implicit in the predecessor labels. The procedures SINSERT(x) and TINSERT(z) are as presented in Section

1.6. The algorithm may be stated as follows:

Procedure PS22(s,t)

begin
flag - 0;
comment: begin use of two processors
fork(2)
if procid = 1 then

initialize:
p - 0,d - oo, fk(i) - 1,fh(i) = IFS(i)I for all i E N;Q'.-- for ."=1...lmax; Q3 - {s}, d-, -- O0 p' -- s, T' .-- 0;
p- 0, di - co, bk(i) - 1, bh(i) = IBS(i)l for all i E N;
Q2 -0 for z = 1....lmax; Q' - {t}, d' 0,p" -t, T' - 0;

synchronize processors
while flag = 0 do

let z be the next index such that Q- 0;
for each u E Q' do

comment: determine next node in FS(u)
v 4- wft(u);

Q, - Q.\{u};
comment: deterrmne new candidate arc
SINSERT(u);
T' - T' U {u};
if v Q' then SINSERT(v);
if u E 7T then flag -- 1;

end
endwhile

endif
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if procid = 2 then
initialize:

- d, - oo,bk(i) - 1,bh(i) = BS(i)I for aU i E N;
Q2 .- 0 for = =,...,Imax; Q' d-{i}, d 4-O,p' -- t, T t -0;
synchronize processors S
while flag = 0 do

let z be the next index such that Q; # 0;
for each v E Qt do
comment: determine next node in BS(u)
U *-- wbk(v);

Q'Z - Q• v1
comment: determine new candidate arc
TINSERT(v);
T - T u{v};
if u Qt then TINSERT(u);
if v E T then flag -- 1;

end
endwhile

endif
comment: mop-up phase from smaller tree
synchronize processors
if IT I < IT'I then

comment: each processor works on next unscanned node u E T"
for each u E T do

for each (u, y) E FS(u) do
if yETUT1 then

if d- + lu < d- then
set locked

di d, + lY;

set unlocked
endif

endif
end

end
else

for each v E T t do
comment: each processor works on next unscanned node v E T

for each (w, v) E BS(v) do
if wET'U7t then

if &, + l, < . then
set locked

set unlocked
endif

endif
end

end
endif
synchronize processors
if procid = 1,13a - mintd + di i E T'};
if procid = 2 ,A -- min{d: + di i E T');
join processors
# - min{0O,,3t };
J .- {iEUTUT' : d' + idi=);

end
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2. COMPUTATIONAL EXPERIENCE

All nine algorithms have been coded in FORTRAN and run on a Sequent Symmetry S81 using either

one or two Intel 80386 processors. Several factors affect the performance of shortest-path codes. First, the

number of nodes is important for Dijkstra-type algorithms, whose majority of work is searching a node-

length array for a minimum label node. Second, the average degree (IAI/INI) is important because the

Dijkstra-type and Si-type algorithms must scan entire forward (or backward) stars each iteration, while

S2-type algorithms typically scan only a subset. Finally, the cost range of a network affects the length and

sparseness of the Q array for Si-type and S2-type algorithms, which are searched each iteration. The ccst

range and degree also affect the number of nodes that tie with a minimum distance label, thereby reducing

the number of searches.

Four node levels (1000, 2000, 3000, 4000), ten average degree levels (5, 10, 15, 20, 25, 50, 75, 100, 125,

150), and three cost ranges (1-100, 1-1000, 1-10000) were chosen as being varied enough to demonstrate
which factors were influencing performance. The total number of random networks generated was 120. Each

code solved twenty problems per network using the same randomly generated s and t nodes, yielding a

total of 2400 problems. Each data point in Tables 1-3 is the sum of times (in seconds) to solve the twenty

problems. Since the S2-type codes require sorted forward and backward stars, all codes were given sorted

forward and backward stars to eliminate this as a relative factor among them. It is debatable whether or

not the sorting time should be counted against the S2 -type algorithms since it requires sorted arc-lists. Here
we simply assume that the data is available in pre-sorted order and concede that if it were not available, the

S2-type algorithms would not be appropriate.

With nine codes and 120 networks, many comparisons and observations can be made. We highlight the

major points of interest. First, there is some overlap with previous studies and we wish to confirm previous

results. As in Dial et al. (1979), we find that S1 is better than S2 on only the smallest degree problems. As

the forward stars get larger, the savings of scanning only a subset are realized. On four high node number,

low degree networks, Mohr and Pasche (1988) found that a D2-ty.pe algorithm required about 38% of the

time needed by a D1 algorithm. Here we found that the averages for D2 were 65%, 49%, and 23% of that

for D1 for the cost ranges 1-100, 1-1000, and 1-10000 respectively.

PS22, the parallel two-tree S2 code, is the overall winner. It had the fastest time on 108 out of the

120 networks, while PS12 was fastest on 12 networks. PS22 was the fastest code when the average degree

increased above 10 on networks with 1-100 cost range and when the average degree increased above 5 on

networks with 1-1000 cost range. It was always the fastest code when the cost range was 1-10000. PD2

improved on the networks with the lowest number of nodes, lowest cost, and highest degree - all factors

that reduce the number of and time for searches for minimum label nodes by increasing ties. Were the degree

increased to make these networks much more dense, PD2 might become more competitive.

Overall, S22 was the fastest sequential code, and was even faster than PS12 and PD2. It had the fastest

time of the sequential codes on all 120 networks. In general, the time required using two S1-type trees is

about 23%, 26%, and 36% of the time using only one S1 tree on the 1-100, 1-1000, and 1-10000 cost ranges
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respectively. Similarly, two S2-type trees require on average 23%, 27%, and 37% of the time required by the

S2 code on 1-100, 1-1000, and 1-10000 cost range networks, respectively.

Dreyfus (1969) comments that savings may accrue for two-tree algorithms if the stopping criterion is

reached well before NV/2 nodes are permanently labelled in each tree. This is definitely the case for random

networks. The one-tree algorithms scan approximately 50.4% of the nodes in the network until t is placed

in the tree, while the two-tree algorithms scan only about 4.7% of the nodes until one is first placed in both

trees. That is, two-tree algorithms scan about 9.3% of the nodes scanned by one-tree algorithms, resulting

in the above mentioned savings in time.

It should be noted that we also solved the above problems using the efficient label-correcting code

THRESH-X2 (see Glover, Klingman, Phillips, and Schneider (1985)). The total times in seconds for the 1-

100, 1-1000, and 1-10000 cost range networks were 877.9, 963.4, and 976.0, respectively. Since this algorithm

solves the one-to-all shortest-path problem, it was not included in the tables. We can see, however, that it

is more efficient to use label-setting algorithms for the one-to-one problem since they stop before the entire

tree is built.

When using two processors, D2 and S12 parallelize nicely as the PD2 and PS12 codes. PD2 averages

a speed-up of 1.93 over D2. PS12 averages a speed-up of 1.93 over its sequential counterpart. S12. In fact,

on some networks a speed-up over 2.0 is achieved. This is due to ties for the minimum label node. The

sequential versions scan all nodes that tie in one tree before moving to the other tree. With two processors.

a node that is first scanned from a group with ties could be the one that is placed next in the opposite tree

and the remaining tied nodes need not be scanned as they are in the one processor version. Less work in

parallel results in a speed-up over 2.0. If the sequential versions scanned a node from each tree alternately,

the speed-up would be less than 2.0, but overall this was slightly slower than scanning all nodes that tied.

PS22 averages only a speed-up of 1.40 over S22. This lower speed-up is due to the additional cost of

using the parallel processing locks during the relatively lengthy mop-up phase. That is, when one processor

has locked a section of code, the other processor waits idly until the section becomes unlocked before it can

execute the same section.

3. SHORTEST-PATH HEURISTICS

There are times when it may be of interest to quickly find "good" paths in a network. For example,

when finding a starting solution to a network flow problem, paths may be found to send flow from sources

to sinks that do not have to be minimum paths. "Good" paths at the start may mean the minimum cost

flow will be found more quickly. We find there is a trade-off between the time to find a path and the length

of the path relative to a minimum path. •

We have seen in Section 2 that the S22 code is the overall fastest sequential code for finding a shortest-

path between two nodes. Recall that this algorithm requires a mop-up phase to scan all remaining unscanned

arcs in the forward or backward stars of the nodes in each shortest-path tree before a shortest-path can be

found. This mop-up phase has been found to take from 3% to 70% of the total time for low degree to high 5
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degree networks, respectively. However, before this mop-up phase we have a node that is in both shortest-

path trees and a path from s to t implicit in the predecessor labels. It may not be an optimal path, but it

is likely to be good and is found much quicker on higher degree networks. The heuristic code H2 used the

path implied by this first node in each shortest-path tree.

Following the mop-up phase in the optimal S22 code, there is a search over all nodes in each tree for

the one with the minimum sum of its distance labels. This same search may be done at the end of heuristic

112, without doing the mop-up phase, to see if there is a better path than the one implied by the first node

in both trees. Heuristic H3 is identical to H2, but performs this additional step.

Paths between s and t are known before a node appears in both shortest-path trees. Heuristic code H1

uses the path implied by the node that first has a finite distance label from both s and t.

Tables 4-6 show the times for twenty problems per network on the same networks used in testing the

optimal algorithms. Also shown is the percentage this time was of the optimal S22 algorithm. As expected,

substantial savings in time are realized on high degree networks, where the mop-up phase dominates the S22

times. On average, HI requires about 65% of S22 time, while H2 and H3 require 73% and 75% respectively.

However on average, H1 ranges from 81% of the S22 time on the lowest degree networks to 46% of S22 time

on the highest degree networks. Similarly, H2 has an average range of 93% to 51% of S22 time and H3 has

an average range of 95% to 52% of S22 time.

Tables 7-9 show how good these paths are compared to the actual shortest-paths. On average, HI found

the shortest-path 5.5% of the time. The average length of its path was 8% greater than the shortest-path

and the worst path found averaged 44% greater than the shortest-path. H2 found 72% of the shortest-

paths (reaffirming the necessity of the mop-up phase). Its average path length was 2.4% greater than the

shortest-path and the worst path it found averaged 19% greater than the optimal path. H3 found 93% of

the shortest-paths with an average path length 0.5% greater than the shortest-path. Its worst path averaged

5% greater than the shortest-path.

It should be noted that in a few instances, HI found more of the optimal paths for a given network than

H2. (See Table 10, nodes = 1000 and degree = 5.) This is similar to the case in which the first node placed

in both shortest-path trees is not necessarily on a shortest-path. Here, the node that first has two finite

labels (Hi) is on a shortest-path, but is not the node that is first placed in both trees (H2). See Helgason et

al. (1988) for an example that demonstrates these cases.

4. CONCLUSION

The objective of this paper has been to present four new shortest-path algorithms, two sequential and

two parallel, and to empirically compare them with five algorithms previously discussed in the literature.

The new algorithms combine the highly effective data structures of the S1 and S2 algorithms with the idea

of building trees from a source node and a sink node in order to find a shortest-path. We found that the

new S22 algorithm was the fastest sequential algorithm on all networks. The new parallel algorithm, PS22,
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was the fastest algorithm on all but the lowest degree networks, where PS12 was the fastest. It appears that

the parallel two-tree Dijkstra algorithm, PD2, might be competitive only on very low cost, dense networks.

The secondary topic of this paper is heuristic S22-type algorithms for obtaining near-minimum paths.

Three new heuristic shortest-path algorithms were discussed and were shown to find very good (often optimal)

paths from a source to a sink much faster than the shortest-path can be found. These heuristics eliminate

the time-consuming mop-up phase required in the S22 algorithm and are quite effective on higher degree

networks.
0

5. APPENDIX

Tables 1-3 present the computational results for solving twenty problems for each of the nine shortest-

path algorithms discussed above. Tables 4-6 present the computational results for solving twenty problems

for the three S2-type heuristics discussed above. Tables 7-9 show how often the heuristics found the optimal 0

solution and how far off the solutions were when they did not.

0

0

0

0

0
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Table 1.-- Time in seconds for 20 problems (Cost range: 1-100)

code

nodes degree DI Si S2 D2 S12 S22 PD2 PS12 PS22
5 7.62 0.79 0.84 6.22 0.46 0.46 3.38 0.35 0.41
10 5.03 1.30 0.94 5.06 0.61 0.54 2.79 0.42 0.43
15 3.81 1.59 0.90 3.86 0.69 0.48 2.18 0.44 0.42
20 3.65 2.06 1.25 3.64 0.87 0.55 2.07 0.53 0.46

1000 25 4.17 3.06 1.74 3.52 1.01 0.57 2.00 0.61 0.48
50 4.03 4.57 2.05 2.50 1.50 0.65 1.49 0.82 0.53
75 4.67 6.21 2.09 2.27 1.91 0.73 1.36 1.05 0.60
100 6.65 9.00 4.01 2.50 2.63 0.89 1.36 1.30 0.64
125 6.74 9.87 4.33 2.10 2.57 0.93 1.25 1.36 0.63
150 9.46 13.72 5.75 2.53 3.32 1.11 1.40 1.70 0.72

5 23.02 2.28 2.51 18.50 0.92 0.89 9.61 0.59 0.68
10 12.88 3.23 2.S3 12.98 1.13 0.93 6.80 0.69 0.70
15 8.73 3.43 2.01 9.67 1.34 0.95 5.27 0.78 0.72
20 9.63 5.50 3.32 8.88 1.55 0.93 4.S2 0.83 0.73

2000 25 9.28 6.55 3.35 8.36 1.89 1.09 4.57 1.06 1 0.78
50 10.05 11.14 5.31 5.97 2.87 1.21 3.33 1.52 0.92
75 9.70 12.56 3.65 4.69 3.22 1.23 2.65 1.59 0.89
100 13.37 18.91 8.79 4.35 4.00 1.41 2.42 2.18 0.98
125 17.01 23.21 9.16 4.53 5.18 1.52 2.51 2.45 1.05
150 18.43 27.33 8.74 4.81 5.91 1.79 2.62 2.89 1.15

5 35.26 3.23 3.44 31.17 1.30 1.24 15.72 0.79 0.92
10 20.38 5.00 3.98 19.70 1.55 1.25 10.38 0.90 0.94
15 17.52 6.86 4.95 17.94 1.96 1.34 9.29 1.09 1.00
20 14.28 8.14 5.26 13.39 2.22 1.37 7.13 1.21 0.99

3000 25 14.05 10.11 5.96 12.97 2.82 1.47 6.99 1.37 1.08
50 11.71 12.90 4.56 8.30 3.37 1.53 4.60 1.71 1.11
75 14.73 18.52 5.32 7.09 4.44 1.73 4.04 2.26 1.23
100 20.02 27.96 9.09 7.14 5.94 1.96 3.99 3.04 1.28
125 22.83 33.82 12.85 6.54 6.93 2.14 3.46 3.33 1.33
150 23.88 34.91 12.52 5.91 6.49 2.14 3.33 3.27 1.32

5 48.97 4.69 4.83 42.68 1.70 1.58 22.13 0.99 1.17
10 27.81 6.26 5.42 26.38 2.00 1.59 13.73 1.11 1.18
15 22.66 8.86 6.05 23.14 2.54 1.72 12.77 1.36 1.27
20 20.28 11.21 7.03 19.05 2.68 1.71 10.11 1.45 1.28

4000 25 21.14 15.66 9.17 17.76 3.32 1.81 9.39 1.71 1.36
50 18.55 20.51 8.52 11.65 4.49 1.99 6.46 2.18 1.40
75 24.84 32.71 14.88 10.82 6.69 2.23 5.78 3.13 1.55
100 27.68 38.53 13.72 9.12 6.84 2.37 5.03 3.24 1.56
125 30.99 44.23 13.37 9.17 8.66 2.56 4.93 3.90 1.69
150 30.05 47.07 10.90 8.34 9.63 2.70 4.44 4.39 1.76

total 655.56 557.49 235.39 425.20 129.15 55.29 227.58 65.59 39.34
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Table 2. - - Time in seconds for 20 problems (Cost range: 1-1000)

code

nodes degree DI S1 S2 D2 S12 S22 PD2 1 PS12 PS22

5 30.08 1.16 1.15 8.70 0.78 0.67 4.62 0.51 0.54
10 20.47 1.52 1.14 9.82 0.87 0.63 5.20 0.55 0.53
15 20.95 2.28 1.45 9.37 0.98 0.63 4.97 0.62 0.54
20 15.79 2.31 1.38 8.56 1.11 0.63 4.55 0.66 0.55

1000 25 14.87 3.11 1.64 7.60 1.15 0.63 4.07 0.69 0.55
50 10.59 4.77 1.99 6.91 1.83 0.78 3.76 1.04 0.64
75 10.74 7.26 2.73 7.04 2.50 0.94 3.71 1.26 0.69
100 10.54 9.24 2.95 6.12 2.91 1.03 3.33 1.54 0.79
125 11.78 11.68 4.75 6.22 3.58 1.23 3.36 1.80 0.89
150 9.90 10.46 3.21 5.07 3.31 1.12 2.76 1.72 0.79

5 93.53 2.19 2.33 27.70 1.21 1.06 14.14 0.75 0.80
10 64.37 3.43 2.52 24.63 1.32 1.02 12,65 0.80 0.79
15 50.13 4.35 3.12 23.35 1.53 1.06 12.18 0.89 0.80
20 41.88 5.34 3.31 20.52 1.72 1.02 10.69 0.94 0.79

2000 25 42.08 7.38 4.78 21.40 2.07 1.11 10.95 1.08 0.84
50 23.76 12.52 5.96 19.29 3.35 1.33 9.87 1.70 0.99
75 22.46 14.42 6.12 14.36 3.85 1.40 7,62 1.90 1.03
100 23.51 19.21 4.62 15.13 5.39 1.74 7.92 2.56 1.22
125 21.25 20.12 5.61 11.78 5.02 1.68 6.25 2.55 1.14
150 27.28 28.97 8.25 12.22 6.68 2.00 6.48 3.13 1.29

5 157.41 3.44 3.52 52.47 1.67 1.44 26.95 0.99 1.09

10 113.51 5.83 4.78 44.69 1.38 1.42 23.37 1.06 1.03
15 84.83 6.93 4.14 43.59 2.14 1.40 21.86 1.18 1.07
20 65.96 8.14 4.81 42.00 2.64 1.52 21.12 1.37 1.13 0

3000 25 63.72 10.61 5.97 39.18 2.83 1.50 19.74 1.46 1.13
50 39.78 15.73 7.43 25.20 3.84 1.63 13.08 1.88 1.22
75 41.44 26.88 11.87 27.83 5.98 2.06 14.06 2.85 1.38
100 34.30 26.80 9.63 20.02 5.99 1.98 10.48 2.79 1.36
125 34.88 32.14 13.63 18.56 6.55 2.05 9.72 3.15 1.39
150 38.17 39.71 13.01 17.74 7.94 2.26 9.30 3.67 1.42

5 269.68 4.98 5.42 78.45 2.03 1.81 39.54 1.17 1,32
10 172.27 8.38 6.76 81.07 2.51 1.83 40.44 1.37 1.35
15 105.57 7.47 4.21 52.22 2.40 1.67 26.15 1.33 1.28
20 100.07 11.86 6.64 62.87 3.17 1.85 31.88 1.64 1.36

4000 25 81.74 12.56 6.36 56.04 3.36 1.89 28.03 1.76 1.41
50 54.62 21.43 7.01 40.52 4.94 2.05 20.58 2.39 1.48 •

75 51.40 31.54 8.64 36.33 6.52 2.36 18.53 3.26 1.65
100 51.97 43.10 13.61 34.58 9.74 2.93 17.88 4.75 1.81
125 39.31 33.45 7.67 26.70 8.98 2.84 13.79 4.43 1.84
150 51.74 50.83 15.91 24.54 10.33 2.99 12.53 4.82 1.93

total 2223.33 573.53 230.03 1090.39 146.60 61.19 558.11 74.04 42.72
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Table 3. - - Time in seconds for 20 problems (Cost range: 1-10000)

code
nodes degree D1 Si S2 D2 S12 S S22 PD2 PS12 PS22

5 51.21 3.77 3.51 11.88 3.86 2.57 6.24 2.25 1.97
10 42.60 3.36 2.77 9.03 3.01 1.81 4.80 1.81 1.49
15 38.74 3.47 2.46 10.66 2.97 1.63 5.62 1.77 1.39
20 40.55 3.96 2.58 10.70 2.92 1.52 5.62 1.75 1.32

1000 25 43.22 4.59 2.74 9.99 2.99 1.53 5.30 1.78 1.30
50 30.62 5.83 2.53 9.21 3.34 1.42 4.88 1.95 1.24
75 34.97 9.09 4.00 11.77 4.31 1.64 6.16 2.34 1.37
100 28.98 10.11 3.87 9.32 4.28 1.63 4.93 2.37 1.36
125 24.48 10.66 3.02 9.21 4.72 1.70 4.87 2.57 1.40
150 25.63 12.82 3.79 8.10 4.79 1.66 4.33 2.57 1.39

5 170.47 5.02 4.63 30.39 4.32 2.99 15.70 2.47 2.26
10 152.29 5.32 4.31 25.82 3.57 2.27 13.52 2.11 1.77
15 150.98 6.23 4.22 31.87 3.70 2.11 16.38 2.13 1-68
20 129.11 6.69 4.15 33.01 3.88 2.03 16.81 2.21 1.67

2000 25 109.28 6.65 4.19 26.79 3.73 1.90 13.92 2.15 1.57
50 101.63 12.15 5.21 28.23 4.87 2.01 14.45 2.64 1.60
75 90.39 17.34 6.67 28.80 5.86 2.13 14.80 3.1.5 1.72
100 66.55 17.62 5.15 27.10 6.51 2.27 14.11 3.43 1.69
125 62.73 21.42 5.41 28.49 7.54 2.50 14.11 3.86 1.89
150 6.5.88 28.84 S.73 27.35 8.46 2.69 14.11 4.32 2.01

5 380.23 6.43 6.07 53.09 4.80 3.44 27.06 2.75 2.54
10 330.84 7.48 5.82 49.91 4.15 2.67 25.16 2.37 2.05
15 313.76 9.13 6.07 51.80 4.22 2.53 26.47 2.40 1.95
20 309.35 11.13 7.24 50.05 4.33 2.37 25.10 2.47 1.89

3000 25 213.96 10.24 5.24 47.35 4.42 2.26 24.08 2.50 1.86
50 165.98 16.37 6.01 52.71 6.07 2.43 26.91 3.25 1.93
75 155.82 26.33 13.15 59.12 8.16 2.82 30.14 4.29 2.12
100 127.05 29.77 12.26 51.31 8.86 2.92 26.22 4.57 2.16
125 81.45 24.72 7.66 35.5.5 7.83 2.54 17.83 4.11 1.90
150 106.22 41.81 10.07 41.62 9.84 3.00 20.97 5.04 2.15

5 741.87 8.62 8.65 108.49 5.51 4.02 53.39 3.12 2.94
10 386.83 7.57 5.51 61.50 4.33 2.92 30.72 2.50 2.24
15 527.01 12.33 8.74 89.12 4.90 2.90 44.47 2.78 2.27
20 416.12 13.36 7.33 82.19 5.03 2.75 41.75 2.78 2.15

4000 25 381.66 15.51 8.32 67.48 4.97 2.64 33.89 2.78 2.07
50 233.50 21.68 6.57 81.93 7.14 2.86 40.43 3.81 2.25
75 199.77 29.65 8.75 68.66 8.04 2.91 34.36 4.26 2.24
100 187.13 43.26 19.67 69.30 9.82 3.19 34.60 5.01 2.38
125 135.70 39.82 11.15 56.98 9.93 3.15 28.98 5.16 2.30
150 131.56 47.19 14.34 61.04 12.08 3.68 30.88 6.03 2.60

total 6986.12 617.34 262.56 1626.92 224.06 98.01 824.07 121.61 76.08

-2
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Table 4.- - Heuristic times in seconds for 20 problems (Cost range: 1-100)

degree overall

code nodes _ 5 10 15 20 25 50 75 100 125 150 avg avg

11000 time 0.33 10.35 0.34 0.34 0.35 0.34 0.34 0.37 0.34 0.34 0.34
% of S22 71.2 63.8 70.1 62.2 60.9 52.3 47.5 41.0 36.7 31.0 53.7

2000 time 0.69 0.68 0.67 0.66 0.68 0.68 0.66 0.67 0.68 0.67 0.67
H1 % of S22 77.3 72.9 70.5 71.6 62.6 56.3 53.4 47.7 44.5 37.5 159.4 0.83

3000 time 1.03 1.00 0.99 0.98 1.00 0.98 0.98 1.00 1.00 0.98 0.99

% of S22 83.0 80.3 74.3 70.9 68.4 64.0 56.5 51.1 47.0 !45.9 66.7
4000 time 1.33 1.28 1.30 1.31 1.30 1.29 (1.30 1.31 1.31 1.34 1.31

% of S22 83.9 80.4 75.5 76.7 71.8 65.2 158.4 55.3 51.3 (49.6 66.8

1000 time 0.40 0.42 10.38 10.41 0.41 0.39 10.39 10.41 0.40 0.40 0.40
% of S22 86.3 (76.4 79.0 74.8 71.4 60.2 153.4 146.2 (42.7 36.4 62.7

2000 time 0.81 0.77 0.79 (0.76 (0.80 0.79 0.74 0.75 0.75 0.76 0.77
H2 %of S22 90.5 82.9 83.8 (81.8 (73.1 65.2 60.0 52.9 49.0 42.3168.2 0.93

3000 1 time 1.15 1.12 1.14 T1. 1 1 [1.14 1.10 1.09 1.11 .1011.08 1.11 69.3
of S22 92.4 89.4 85.6 SO9 77.5 71.8 63.3 56.6 51.4 I50.3 71.9

40001 time 1.48 1.44 47 1.46 jl.48 1.43 1.44 "1.43 1.42 1.46 1.4
%of S22 93.7 90.7 85.7 85.1 181.5 72.2 64.5 60.4 55.5 54.1 174.3

1000 time 0.42 0.44 0.40 0.43 i0.43 0.41 10.41 0.44 041 0.42 042
(%of S22 90.6 80.5 83.2 79.4 74.7 62.7 156.7 48.8 44.7 37.9(659

2000 time 0.83 [0.81 0.83 0.79 0.84 0.81 0.76 0.77 0.77 0.79 0.90
H3 %ofS22 93.2 18 7.3 185.5 176.6 67.2 61.9 54.7 50.8 43.8170.8 0.97

3000 time 1 1. 19 1.1S 11.15 1.1S 1.17 1.12 11.18 1.12 (1.11 1.16 71.9
S 7,ofS22 949 95.1 88.0 83.4 ,80.4 76.3 65.0 160.1 52.5 51.7 74.7

4000 time 1.52 11.47 11.51 11.49 1.51 11.47 1.47 147 1.4611.49 1.49 1
1% of S22 96.1 92.7 (87.7 87.1 83.3 73.9 66.0 61.9 (56.9 55.3 76.1
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Table 5.- - Heuristic times in seconds for 20 problems (Cost range: 1-1000)

degree overall

code nodes 5 10 15 20 25 50 175 100 125 1150 avg avg

1000 time 0.49 .44 0.43 10.40 0.40 10.42 1 .40 0.40 0.4110.0 0.42
%ofS22 73.7 70.0 69.0 64.0 62.6 53.5 43.1 38.7 133.2 135.4 54.3

2000 time 0.86 0.80 0.75 0.76 0.76 10.77 [0.73 0.75 10.72 0.75 0.77
HI 1% of S22 80.7 78.6 70.9 74.0 68.3 57.9 152.3 143.0 42.7 137.4 60.6 0.92

3000 1 time 1.17 1.13 1.08 1.06 1.09 1.06 1.07 11.03 1.06 1.03 1.08 61.4
% of S22 81.1 79.5 77.2 69.7 72.7 64.9 51.9 51.9 51.5 45.6 64.6

4000 time 1.50 1.42 1.39 1.41 1.37 1.38 1.37 1.40 1.37 1.42 1.40
%of S22 82.8 77.6 83 .5 76.4 72.5 67. 58.1 47.8 48.0 47.6 66.2

1000 time 0.59 0.53 10.51 10.49 0.46 0.47 0.48 0.47 0.49 0.45 0.49 -

% of S22 87.7 84.8 81.1 77.2 72.8 60.9 50.9 45.5 40.0 40.5 64.1

2000 time 0.98 0.90 0.87 10.$5 0.86 0.88 0.84 0.88 0.81 0.85 0.87
H2 % of S22 92.7 88.9 82.2 83.3 76.8 66.1 59.7 50.4 48.3 42.6 69.1 1.04

-- 3000 time 1.34 11.26 11.22 11.23 11.22 11.17 11.23 1.15 1. 14 11.14 '11.21 7 .
%of S22 93.1 88.4 187.2 80.9 81.6 71.7 59.5 58.1 55.8 50.6 72.7

4000 time 1.68 1.65 1.50 1.58 1.55 1.52 11.53 11.6 152 1.57 1.57
%ofS22 92.S 90.3 89.8 85.4 81.8 74.2 64.7 54.1 53.3 .52.5 74.0

1000 time 0.61 0.56 0.52 0.51 0.48 0.50 0.51 10.49 10.52 0.48 0.52
% of 522 91.3 88.7 83.1 S0.0 76.1 64.2 53.7 148.0 42.2 42.6 67.0

2000 time 1.01 0.97 0.90 0.88 0.88 0.90 0.90 0.91 0.84 0.88 0.91 1
H3 % of S22 95.5 95.9 85.0 85.8 79.0 67.9 64.3 52.4 .50.1 1 44.3 72.0 1.07

3000 time 1.37 1.29 11.25 11.27 1.26 1.20 1.25 11.18 11.17 1.17 1.24 T2.3
% of S22 95.2 190.4 IS9.0 1S3.2 184.1 173.5 60.S 59.3 57.0 51.9 74.4

4000 time 1.71 1.69 1.53 1.62 1.58 1.55 1.56 1.64 1.55 1.60 11.60

% of S22 94.5 92.3 91.8 87.4 83.6 75.7 66.1 56.1 54.4 53.6 75.6
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Table 6.- - Heuristic times in seconds for 20 problems (Cost range: 1-10000)

degree overall

code nodes .5 10 1 15[20 25 50 75 1100 125 150 avg avg

1000 time 2.05 1.54 1.32 11.23 1.21 1.05 1.04 11.03 1.00 1.00 1.25
% of S22 79.8 85.2 81.2 80.6 79.2 74.1 63.7 63.3 59.0 60.4 72.6

2000 time 2.59 1.86 1.71 1.61 11.53 1.42 [1.36 1.34 1.35 1.33 1.61
Hi % of S22 86.9 82.0 80.8 79.1 80.5 70.6 164.0 59.0 153.9 49.6 70.6 1.75

3000 time 2.97 2.26 T2.07 1.98 1.81 1.74 1.68 1.69 11.63 1.65 1.95 72.0
% of S22 86.5 84.5 81.9 83.3 80.1 71.5 159.6 57.8 64.0 54.9 72.4

4000 time 3.32 2.53 2.42 2.22 2.19 2.02 1.37 1.98 1.95 2.02 2.20
% of S22 82.7 86.6 83.4 180.8 82.9 70.7 58.1 62.1 61.8 54.8 72.4

1000 time 2.46 11.72 1.51 1.37 1.33 1.15 1.16 1.10 1.07 1.05 1.39
% of S22 95.8 95.2 92.6 90.4 86.9 80.6 70.7 67.4 63.3 63.3 80.6

2000 time 2.90 2.13 1.94 1.83 1.69 1.55 1.51 1.47r148 1.46 1.80
H2 % of S22 97.4 93.7 92.0 89.8 88.6 77.3 71.0 65.0 59.0 54.4 78.8 1.94

3000 time 3.32 T254 1230 2.16 1. 91 1.92 1.86 11.72 1.77215 1 79.8
% ofS22 96.5 94.8 91.2191.2 88.6 78.7 68.1 63.6 67.8 58.9 79.9

4000 time 3.87 2.76 2.68 2.49 2.36 2 .2 4 1.53 2.14 2.08 2.19 243
% of S22 96.3 194.4 192.4 90.4 89.7 178.3 64.7 67.0 66.1 59.6 79.9

1000 time 2.48 1.75 1.53 1.40 1.35 1.16 11.19 1.13 1.09 1.08 1.42

%of S22 96.7 96.6 94.2 92.0 88.4 182.0 72.6 69.0 64.4 64.7 82.1 •

2000 time 2.94 12.16 11.9711.86 11.71 1.58 1.59 11.50 1.51 1.50 1.83
H3 % of S22 98.6 194.9 193.5 91.4 89.8 78.7 74.6 56.1 60.2 55.680.3 1.98

3000 time 3.35 2.60 2.34 2.20 2.07 1.99 1.96 11.89 1.79 1.84 2.20 81.4
1% of S22 97.5 97.1 192.5 92.6 191.6 181.8 69.6 64.7 70.2 61.2 81.9

4000 time 3.91 2.78 2.74 12.52 2.39 2.28 1.56 2.18 12-11 2.22 2.47
% of S22 97.3 95.3 94.6 91.7 90.7 79.6 66.1 68.3 67.0 60.5 181.1
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Table 7.- - Solution data for 20 problems (Cost range: 1-100)

degree overall

code Inodes _5 10 15 20 25 50 75 100 125 150 avg avg

% opt 85.0 55.0 55.0 45.0 70.0 65.0 60.0 65.0 70.0 95.0 66.5

1000 %>opt 2.6 11.7 10.9 11.S 6.5 9.4 7.8 4.7 6.0 1.2 7.3
worst % 38.6 57.9 48.4 45.9 50.0 42.3 26.7 30.0 37.5 25.0 40.2

% opt 50.0 55.0 50.0 50.0 40.0 65.0 60.0 80.0 70.0 40.0 56.0

2000 %>opt 9.1 7.0 10.7 10.7 8.4 2.9 7.6 4.2 5.6 12.8 7.9 58.3
HI worst % 44.8 30.5 44.6 71.0 50.0 12.5 28.6 26.7 30.0 45.5 38.4 7.6

% opt 55.0 60.0 40.0 60.0 40.0 65.0 55.0 45.0 70.0 65.0 55.5 39.5

3000 %>opt 4.6 9.1 9.4 10.3 12.6 9.3 7.2 7.1 4.8 5.6 8.0
worst % 29.5 94.5 35.1 53.5 46.8 41.7 25.0 44.4 27.3 22.2 42.0

% opt 40.0 70.0 35.0 65.0 50.0 60.0 65.0 65.0 50.0 50.0 55.0

4000 %>opt 12.8 3.7 9.8 3.4 6.5 4.8 4.8 5.2 11.0 11.0 7.3
worst % 36.2 22.9 46.6 21.7 43.9 20.0 25.0 50.0 50.0 57.1 37.3

- % opt 75.0 85 0 85 70.0 80.0 65.0 80.0 95.0 80.0 185.0 80.0

1000 %>opt 3.7 1.0 2.2 3.1 1.3 5.0 3.1 0.5 4.8 3.0 2.8
worst % 38.6 8.2 26.2 14.3 8.1 23.5 26.7 9.1 33.3 28.6 21.7

% opt 65,0 80.0 70.0 80.0 60.0 75.0 85.0 90.0 85.0 75.0 76.5

2000 %>opt 2.4 1.7 2.7 1.2 3.1 2.7 1.4 0.8 2.0 4.7 2.3 76.1

Ht2 worst % 16.8 22.1 13.8 11.3 16.7 17.6 13.3 12.5 25,0 42.9 19.2 2.6

% opt 75.0 60.0 65. 70.0 70.0 60.0 90.0 75.0 85.0 80.0 73.0 19.9

3000 %>opt 1.8 3.6 2.7 2.9 2.3 5.0 0.7 2.9 1.4 2.8 2.6
worst % 16.7 3.5.0 15.7 19.1 15.2 37.5 6.3 15.4 9.1 25.0 19.5

% opt 65.0 55.0 65.0 85.0 70.0 90.0 75.0 75.0 85.0 85.0 75.0
4000 %>opt 4.1 4.5 2.6 1.0 2.3 1.0 2.4 2.8 2.4 1.7 2.5

worst % 35.5 13.7 20.0 7.0 15.2 12.0 j40.0 20.0 16.7 11.1 19.1

% opt 100.0 90.0 100.0 95.0 100.0 100.0 85.0 100.0 95.0 100.0 96.5

1000 %>opt 0.0 0.7 0.0 0.1 0.0 0.0 1.2 0.0 0.6 0.0 0.3
worst % 0.0 7.1 0.0 1.8 0.0 0.0 7.7 0.0 10.0 0.0 2.7

% opt 100.0 80.0 95,0 100.0 75.0 100.0 90.0 95.0 95.0 90.0 92.0

2000 %>opt 0.0 1.7 0.5 0.0 1.8 0.0 1.1 0.4 1.0 1.2 0.S 93.6

113 worst % 0.0 22.1 7.2 0.0 12.1 0.0 13.3 5.6 25.0 9.1 9.4 0.6

% opt 95.0 95.0 95.0 95.0 90.0 85.0 100.0 90.0 90.0 95.0 93.0 7.8

3000 %>opt 0.1 0.4 0.5 0.7 0.3 2.4 0.0 1.3 1.0 0.6 0.7

worst % 2.1 6.5 6.2 8.8 2.0 37.5 0.0 14.3 9.1 9.1 9.6

% opt 90.0 95,0 80.0 95.0 100.0 95.0 100.0 95.0 90.0 900 930

4000 %>opt 0.9 0.4 0.9 0.2 0.0 0.7 0.0 0.8 1.4 1.2 0.7

worst % 11.2 9.6 9.6 4.3 0.0 12.0 0.0 20.0 18.2 11.1 9.6

D-25



Table 8.- - Solution data for 20 problems (Cost range: 1-1000)

degree overall

code nodes 5 10 15 20 25-1 50 75 1001125 150 avg avg

% opt 55.0 60.0 35.0 60.0 55.0 50.0 55.0 '45.0 40.0 50.0 50.5
1000 %>opt 6.6 8.1 12.5 10.9 4.8 11.2 12.8 6.3 12.9 10.4 9.7

worst % 25.7 44.7 64.4 165.8 20.3 40.7 129.0 35.2 73.7 70.7 67.0
% opt 55.0 70.0 35.0 70.0 50.0 50.0 55.0 45.0 65.0 40.0 53.5

2000 %>opt 4.9 5.5 10.0 4.2 5.3 11.9 5.6 8.4 11.3 13.1 8.0 52.6
HI worst % 19.5 74.1 34.3 31.8 37.4 57.1 23.4 38.2 73.7 82.8 47.2 8.2

% opt 45.0 55.0 70.0 70.0 50.0 75.0 35.0 75.0 65.0 40.0 58.0 46.9
3000 %>opt 10.8 3.2 2.7 5.3 8.4 4.3 8.6 4.0 5.4 8.1 6.1

worst % 48.4 14.3 20.7 35.4 31.4 23.7 29.1 21.6 46.5 34.3 30.5
% opt 25.0 25.0 65.0 45.0 60.0 50.0 60.0 35.0 .50.0 70.0 48.5

4000 %>opt 10.9 11.3 7.4 10.4 7.8 7.2 6.3 13.1 7.7 5.8 8.8
worst % 39.1 36.4 68.6 24.3 53.0 26.9 40.4 38.4 61.3 41.0 42.9 j
% opt 65.0 60.0 65.0 65.0 75.0 70.0 65.0 80.0 85.0 70.0 70.0

1000 %>opt 2.8 5.7 4.5 4.9 2.3 1.8 4.1 1.4 0.8 4.9 3
worst % 38.0 32.9 49.4 49.S 31.5 12.3 12.8 7.7 8.2 31.3 27.4
% opt 70.0 65.0 55.0 70.0110.0 65.0 70.0 '60.0 [900 75.0 70.0

2000 %>opt 2.0 1.4 2.3 2.4 0.8 3.4 2.3 3.9 0.4 1.1 2.0 69.9
H2 worst % 14.6 17.4 13.7 15.8 12.5 22.4 17.2 19.1 3.8 7.2 14.4 2.4 •

% opt 65. 65.0 73.0 65.0 75.0 75.0 1 70.0 [70.0 80.0 55.0 172.51 20.7
3000 %>opt 2.9 1.S 2.6 3.2 1.0 1.7 1.4 2.3 1.5 0.9 1.9

worst % 27.3 15.4 19.9 41.7 20.3 12.2 13.0 30.3 11.5 9.3 20.1% opt 65.0 45.0 70.0 60.0 65.0 70.0, 80.0 60.0 70.0 18-5:_ 1-6.0
4000 %>opt LS 3.7 5.4 2.5 2.3 1.8 0.4 37 02

worst % 14.9 25.9 59.2 18.9 29.0 4.8 5.2 26.4 2-1.3 1.3 20.
% opt 100.0 100.0 95.0 90.0 95.0 85.0 100.0 95.0 95.0 '85.0 94.0

1000 %>opt 0.0 0.0 0.1 0.5 0.1 0.9 0.0 0.2 0.2 2.8 0.5
worst % 0.0 0.0 30 8.4 1.2 13.9 0.0 3.9 4.6 31.3 6.6

% opt 80.0 95.0 95.0 90.0 95.0 85.0 95.0 95.0 100.0 90.0 92.0
2000 %>opt 0.8 0.0 0.2 0.4 0.1 2.5 0.1 0.9 0.0 0.6 0.6 92.1

H3 worst % 8.4 0.6 5.2 4.5 1.3 20.7 1.9 19.1 0.0 7.2 6.9 0.6
% opt 90.0 95.0 90.0 [900 195. 100.090.0 95.0 950j1000 94.0 7.6

3000 %>opt 1.6 0.0 1.5 0.2 0.8 0.0 0.4 0.1 0.2 1 0.0 0.5
worst % 27.3 1.2 19.9 3.1 20.3 0.0 5.0 1.2 5.2 0.0 8.3

% opt 80.0 80.0 90.0 90.0 T95.0 70.0 95.0 95.0 95.0 9.5.0 88.5
4000 %>opt 0.8 0.7 0.6 0.2 0.0 1.4 0.0 1.0 0.8 0.1 0.6

worst % 4.3 8. 8 10.4  2.0 0.3 4.8 0.9 21.8 28.9 1.3 8.4
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Table 9.- - Solution data for 20 problems (Cost range:1-10000)

degree overall

code nodes 5 10 15 20 25 50 75 100 1125 150 avg avg
% opt 40.0 65.0 45.0 55.0 50.0 50.0 45.0 75.0 45.0 60.0 50.5

1000 %>opt 8.4 12.7 9.8 7.3 6.9 14.3 11.8 3.2 7.7 6.8 9.7
worst % 32.0 90.7 40.6 35.9 54.9 89.5 48.1 26.2 21.9 59.4 67.0

% opt 45.0 55.0 45.0 60.0 40.0 35.0 70.0 65.0 55.0 45.0 53.5

2000 %>opt 5.4 6.2 6.3 13.3 13.8 11.6 8.1 6.2 11.2 9.3 8.0 52.6
H1 worst % 20.5 30.8 29.6 57.0 35.1 52.3 55.8 46.0 40.0 18.5 47.2 8.2

% opt 50.0 70.0 50.0 65.0 45.0 65.0 50.0 40.0 6.5.0 50.0 58.0 46.9

3000 %>opt 9.1 5.4 7.5 9.6 12.8 5.7 13.4 12.6 9.0 6.9 6.1
worst % 58.8 22.2 52.6 52.0 65.3 42.6 80.0 56.5 99.6 39.0 30.5

% opt 40.0 55.0 65.0 50.0 30.0 35.0 60.0 60.0 60.0 60.0 48.5
4000 %>opt 8.5 7.1 2.9 8.3 13.8 8.5 6.5 4.9 8.9 5.3 8.8

worst % 45.4 35.3 10.5 34.5 32.4 35.4 40.4 20.0 32.3 28.7 42.9

% opt 60.0 85.0 55.0 80.0 45.0 80.0 65.0 75.0 75.0 80.0 70.0
1000 %>opt 3.3 0.7 2.5 1.1 3.9 1.9 2.3 0.7 2.3 1.3 3.3

worst % 12.3 7.4 13.3 11.1 16.2 20.8 27.5 3.5 11.6 11.1 27.4

% opt 80.0 75.0 50.0 70.0 80.0 75.0 75.0 65.0 65.0 70.0 70.0
2000 %>opt 1.2 1.2 3.0 4.9 3.3 1.5 1.6 3.2 5.o 2.2 2.0 69.9

H2 worst % 12.5 10.0 17.4 30.6 31.8 10.9 15.9 21.6 65.9 23.5 14.4 2.4
% opt 75.0 75.0 65.0 90.0 80.0 80.0 65.0 70.0 1100.0 65.0 72.5 20.7

3000 %>opt 2.1 2.2 3.5 0.3 1.7 1.4 4.2 2.5 0.0 1.5 1.9
worst % 11.7 20.4 21.1 4.4 11.4 10.3 33.1 17.6 0.0 14.3 20.1

% opt 60.0 75.0 70.0 65.0 55.0 65.0 80.0 70.0 70.0 70.0 67.0
4000 %>opt 1.4 2.5 2.3 2.7 2.8 2.7 0.4 2.4 2.4 2.8 2.5

worst % 5.9 27.1 16.3 15.9 9.3 14.7 5.2 19.2 17.5 34.7 20.7
% opt 85.0 95.0 85.0 95.0 85.0 85.0 95.0 1100.0 95.0 90.0 94.0

1000 %>opt 0.8 0.3 0.4 0.2 0.4 0.8 0.1 0.0 0.0 0.2 0.5
worst % 6.1 5.2 4.5 2.7 2.4 6.3 1.5 0.0 0.3 2.2 6.6

% opt 100.0 90.0 75.0 80.0 90.0 95.0 100.0 95.0 90.0 95.0 92.0

2000 %>opt 0.0 0.1 1.2 3.1 0.7 0.4 0.0 0.2 0.4 0.2 0.6 92.1

H3 worst % 0.0 1.6 6.4 18.5 6.5 7.9 0.0 3.0 7.4 2.6 6.9 0.6

% opt 85.0 100.0 100.0 95.0 95.0 100.0 100.0 95.0 100.0 90.0 94.0 7.6
3000 %>opt 0.5 0.0 0.0 0.0 0.4 0.0 0.0 0.6 0.0 0.2 0.5

worst % 6.8 0.0 0.0 0.6 7.0 0.0 1 0.0 13.3 0.0 1.7 8.3

% opt 95.0 90.0 95.0 85.0 100.0 95.0 95.0 90.0 90.0 95.0 885
4000 %>opt 0.1 0.0 0.2 1.3 0.0 0.4 0.0 0.9 1.2 0.4 0.6

worst % 2.4 0.2 3.4 15.9 0.0 11.4 0.9 12.8 17.5 9.0 8.4
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ABSTRACT

The objective of this study was to develop and empirically test a shortest augmenting path

algorithm for the transportation problem. The algorithm maintains dual feasibility and

complementary slackness and works toward satisfying primal feasibility. Sophisticated

heuristics and a modified scaling method are used to achieve an excellent advanced start.

Convergence is assured via the use of the shortest augmenting path procedure using re-

duced costs for arc lengths. The software implementation of our algorithm is uniformly

faster than the other competing software on test problems having a small total supply. As

the total supply increases, the algorithm degrades and is slower than the best competing

software based on a specialization of the primal network simplex algorithm. This manu-

script provides the strongest evidence to-date which indicates that network problems hay- 0

ing small total supply can best be solved via dual methods and network problems having

large supply can best be solved via primal methods.

0
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I. INTRODUCTION

The classical transportation problem (also known as the Hitchcock-Koopmans trans-

portation problem) is to find a least cost set of flows on an uncapacitated bipartite graph.

Mathematically, this may be formulated as the following special mathematical program:

minimize >" ci xij (1)
i, J

subject to: xij . si, (i 1 1, ... , m) (2)

xij = dj, (j-- 1, ... , n) (3)

xij 2 0, (all i, j) (4)

where cj denotes the unit cost for shipments from source i to demand j, si denotes the

supply at source i, dj denotes the demand at destination j, and xij denotes the flow from

source i to destination j. If I si = > dj then (1) - (4) has a feasible solution; otherwise,

it does not. It is well known that if si for all i and dj for all j are integers, then there

exists an optimal set of flows which are integral.

The transportation problem plays a very important role in the area of network pro-

gramming. Not only are there numerous applications of the transportation problem, but

every minimal cost network flow problem can be transformed into a transportation prob-

* lem (see Wagner [1959]). Hence, the algorithm development for the transportation prob-

lem may benefit the development of algorithms for the minimum cost flow problem.

The transportation problem is a special case of the minimum cost flow problem and
0

can be solved by any of the network flow algorithms which include the following:

(1) network simplex (Johnson [1966]),

(2) out-of-kilter (Fulkerson [1961]),

(3) relaxation method (Bertsekas and Tseng [1988a]),
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(4) interior point algorithm (Karmarkar [1984]), and

(5) shortest augmenting path algorithm (Iri [19601).

The network simplex algorithm is a specialization of the simplex method for solving

network problems. Because of the special structure of the constraint matrix in the net-

work problem, the network simplex algorithm completely eliminates the need for carrying

and updating the basis inverse. Furthermore, by using the concept of a rooted basis tree

and node potentials, the steps of the simplex algorithm can be performed directly on a

network diagram. In addition, special strategies for entering variable selection have been

developed which enhances the performance of the algorithm. Computer software imple-

menting these ideas have been successfully used to solve large-scale network problems.

Even though the network simplex method does not have a polynomial running time

bound, empirical studies have shown that its best computer software implementations are

comparable to or better than the other algorithms' implementations for the minimum cost

flow problem (Ahuja, Magnanti, and Orlin [1989J). For a complete development of the

network simplex algorithm and its computational complexity see Kennington and Hel-

gason [19801, Papadimitriou and Steiglitz [1982], Tarjan [1983], and Ahuja, Magnanti,

and Orlin [19891.

The out-of-kilter algorithm is based on the Kuhn-Tucker optimality conditions and is

composed of two phases: a primal phase and a dual phase. During the primal phase the

dual variables are held fixed and the flows are modified. During the dual phase, the

primal variables are held fixed and the duals are modified. The algorithm iterates be-

tween the primal and dual phases until the Kuhn-Tucker optimality conditions are satis-

fied. For a detailed description of the out-of-kilter algorithm, see Kennington and Hel-

gason [1980]. For an extensive computational complexity study of this algorithm, see

Ahuja, Magnanti, and Orlin [1989].
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The relaxation algorithm (Bertsekas and Tseng [1988a]) is a special implementation of

the primal-dual method. It is based on iterative improvement of a Lagrange relaxation

functional of the minimum cost flow problem. The complementary slackness conditions

are maintained at each iteration while the duals are improved along coordinate ascent

directions. Termination occurs when primal feasibility is attained. A software implemen-

tation of the algorithm (RELAX) is described in Bertsekas and Tseng [1988b].

The interior point algorithm is a new polynomial-time bound algorithm for solving the

linear program. It takes a series of steps though the interior points of the primal feasible

region and moves in a decent direction from one interior point to another, eventually

converging to a near optimal solution. The algorithm has been implemented by AT&T in

a product called the KORBX®t system. For a complete theoretical development of the

interior point algorithm, see Karmarkar [1984], Vanderbei, Meketon, and Freedman

[1986], Karmarkar, Lagarias, Slutsman, and Wang [1989]. For an empirical study of the

algorithm, see Cheng, Houck, Liu, Meketon, Slutsman, Vanderbei, and Wang [1989], and

Carolan, Hill, Kennington, Niemi, and Wichmann [1990].

The shorest augmenting path algorithm (SAP) is a dual method. Note that the dual

problem of (1) - (4) is

maximize s1A1 + dj rj (5)

subject to: cj - Ai - xj 0 0, (all i, j) (6)

where Ai and xj are dual variables associated with supply node i and demand node j,

respectively. The complementary slackness conditions are

( - ,i - J) Xj - 0, (all i, j) (7)

t KORBX is a registered trademark of AT&T.
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and the value of the expression ( cii - A1 - Xj ) is known as the reduced cost, ij , for arc

(i, j). The SAP algorithm applied to (1) - (4) maintains a set of duals (X, v) and a set of

flow assignments (x) which satisfy (4), (6), and (7). Systematic changes are made to both S

the duals and the flow assignments until (2) and (3) are also satisfied. When (2), (3), (4),

(6), and (7) are all simultaneously satisfied, the corresponding flow assignments are an

optimum for (1) - (4). An extensive theoretical study of the shortest augmenting path

algorithm for solving the minimum cost flow problem can be found in Tomizawa [1971],

Papadimitriou and Steiglitz [1982], Tarjan [1983], and Ahuja, Magnanti, and Orlin

[19891.

In this paper, we present a new algorithm for solving the transportation problem which

is a combination of heuristic procedures coupled with SAP. The algorithm consists of five

phases: column reduction, reduction transfer, row reduction augmentation, scaling, and

shortest path augmentation. The column reduction is a simple heuristic which produces

an advanced start. If this heuristic solves the problem, then the algorithm terminates.

Otherwise, two sophisticated heuristics are applied (reduction transfer and row reduction

augmentation) in an attempt to obtain additional flow assignments. If the advanced heu-

ristics produce an optimal solution, the algorithm terminates. Otherwise, a modified

scaling technique is used to obtain additional flow assignments. If the scaling procedure

produces an optimal solution, the algorithm terminates. Otherwise, a shortest augmenting

path method is used to complete the last flow assignments. The steps of the SAP algo-

rithm can be described as follows:

SAP Algorithm for the Transportation Problem

step 1. Initialization and column reduction heuristic

step 2. If (2) and (3) are satisfied, then terminate

step 3. Reduction transfer heuristic

step 4. Scaling heuristic S
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step 5. If (2) and (3) are satisfied, then terminate

step 6. Row reduction augmentation heuristic

step 7. If (2) and (3) are satisfied, then terminate

step 8. Shortest path augmentation.

This algorithm is a generalization of our previous work on the assignment problem

(Kennington and Wang [1989a]) and the semi-assignment problem (Kennington and

Wang [1989b]).

II. COLUMN REDUCTION

The column reduction heuristic generates an initial set of flows (x), and duals (k., vT)

that satisfy (4), (6), and (7). Note that (6) implies that for each j,

xj :5 cij - Ai , for all i. Hence, we begin with A - 0 for all i, xU - 0 for all i, j

and xj = min {cu: 1 si sm) for all j. For those pairs (i, j) such that

cij - A -xj - 0, the xU is set to the largest value possible such that the total flow origi-

nating at source i does not exceed si and the total flow to destination j does not exceed

* dj. Obviously dual feasibility and complementary slackness conditions are preserved by

this procedure.

Proposition 1. The time bound for the column reduction is O(mn).

At the termination of the COLUMN REDUCTION procedure (4), (6) and (7) will be

satisfied. If (2) and (3) are also satisfied, then an optimum has been found. However,

40 this never occurred in our empirical experiments and additional work was required. In

the column reduction, the cost range is a crucial factor which affects the amount of

supply that can be assigned to destination nodes. In general, the smaller the cost range,

the more flow that can be assigned to destination nodes. One experiment showed that for

a cost range of from 0 to 100, almost 75% of the total supply was assigned to destination
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nodes by the column reduction heuristic; while, for a cost range of from 0 to 100,000,

only one-half of the total supply was assigned. Of course, the unassigned supply can be

assigned by generating a sequence of shortest augmenting paths from source nodes with 0

unassigned supply to destination nodes with unassigned demand. However, since the

shortest path augmentation is computationally expensive (we will discuss this in Section

V), there is great motivation to use this heuristic to assign as much flow as possible 0

before using the shortest augmenting path procedure.

In the following two sections, we present two other more sophisticated heuristics: re-

duction transfer and row reduction augmentation. The application of these two proce-

dures can result in the assignment of additional supply at a very reasonable computational

expense. •

40III. REDUCTION TRANSFER

At the termination of the column reduction procedure, a forest can be formed from

the arcs having nonzero flow. A forest composed of four trees (components) is illustrated

in Figures 1, 2, and 3. Note that for each tree, at most one node has remaining supply or

demand. Since (7) is satisfied, the reduced cost for each arc in each tree is zero.



(3) 
j2 j3

j, ) 2 3 3 {3)
(2)

i2 1* 5 2" {2}

{2)} 3j 2 i3 1" 1" 4 (2)

h 2) i4  7 3 2" (3)

(3) (6) (2) (2)

Figure 1. Sample Transportation Problem. Figure 2. Cost Matrix.
(() gives the supply (demand) at source (* shows min{cii) in the
(destination) node.) column reduction.)

S(3) 1 -- () Q(2)

Figure 3. The Forest Associated with the Sample Transportation Problem.
((.) gives the remaining supply (demand) at source (destination) node and [']

0 denotes the flow on the corresponding arc.)

Let C be a component with remaining supply. Let I = {ii...., i,) and

J = jUI, ... , jt} be the set of supply and demand nodes in C, respectively. The reduction

transfer procedure for the supply component C reduces dual variable Xj of j by some

amount A > 0 , for all j E J¢, and for all i E I increases Aj by A. Dual feasibility

considerations determine an upper bound for A.

Proposition 2. Let (k, ff, x) denote a set of vectors that satisfy (6) and (7). Let C be

a component with a set of supply nodes Ic = {il, ..., i.) and a set of demand nodes

= {j , ... , jj). Select A such that 0 s A < miniE1, [ minktJV (w 1 )]. Let
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-{ Ai+A, ie

A1, otherwise •

and

ssk - A, k EJcIk, otherwise.

Then (, , x) satisfies (6) and (7).

The proof of Proposition 2 may be found in Wang [19901.

The reduction transfer procedure is presented below:

Procedure REDUCTION TRANSFER

begin

1. 1- {1, ..., m}, J4- (1, ..., n}, and let II denote the set of supply S

components obtained from Procedure COLUMN REDUCTION;

2. for all C E fl

3. Ic'- {i:ieC and iEI) andJe,*- :jEC and jEJ;

4. A .min {w[i,j]:iEI, andjEJ-J.};

5. [j]- 7j] - A, for all j E JE ;

6. X[i] X-[i] +A, for all iEI,;

7. end for

end

Note in step 1, we only apply the reduction transfer to supply components which

insured that the dual functional will not be reduced.

Proposition 3. The time bound for the reduction transfer procedure is O(mn).
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Proof. In the worst case obtaining the final value of A takes 0(1 Ic I J - J. 1) time, and

since , I1 :s m and I J - J, 1 < n, the time bound for the procedure is 0(mn). E

40
Even though the reduction transfer does not directly reduce the unassigned supplies, it

may help to achieve more flow assignments in the following row reduction augmentation

and shortest path augmentation procedures. That is, after the reduction transfer, a satu-

rated demand node j is more expensive to the supply nodes which are not in the same

component, and an unexhausted supply node is less expensive to the demand nodes which

are not in the same component.

IV. ROW REDUCTION AUGMENTATION

The row reduction augmentation is another heuristic procedure that further reduces

the unassigned supply while maintaining dual feasibility as well as the complementary

slackness conditions. As we mentioned earlier, the saturated demand nodes are more

expensive to unassigned supply nodes which are not in the same component and unas-

signed supply nodes are less expensive to demand nodes after the reduction transfer;

therefore, an application of the row reduction augmentation is more likely to achieve

additional flow assignments.

In a classical row reduction, for each unassigned supply node i, we find 8 = min { Wik:

k - 1, ..., n ) and increase Ai by 6. Then if there exists a demand node j such

that wij - 6 and it is unsaturated, we assign f units of flow from source node i to destina-

tion node j, where f - min ( s, - 2:k xi, dj - Yxj }. Dual feasibility and the com-

40 plementary slackness conditions are maintained and we reduce the total unassigned sup-

ply by f.

Proposition 4. Let I = {1, ..., m}, and J = (1, ..., n), and (X, iT, x) denote a set of

vectors that satisfy (6) and (7). Select an i E {l: >Ik X1 , < Sj, ! E I} and let m = nin

E:-II



(wi : k E J). Let

A,+ , 1-i

I,, otherwise.

Select a j E J such that Woj = .

If 71 xu < dj, then let f=min {Si- Ik Xjk, dj- 7j xj) and

xlk+f, if I = i and k = j
~Ik

xkk, otherwise.

If 21xu = di, selectapEI such that p i and xj 0 then let

f-min{sj- Ik Xik, xpj) and

xu + f, if I= i and k=j

]il - xpj- f, if I =p and k =j

xk, otherwise.

Then (1, x, x) satisfies (7).

The proof of Proposition 4 may be found in Wang [1990].

In our study, we modified the classical row reduction procedure by allowing the flow

assignment to a saturated demand node to be changed from one source node to another

(as described in Proposition 4). Also, we embedded the reduction transfer procedure

within the row reduction, so that the deassigned source node may find another unsatu-

rated demand node in the next round of the application of row reduction. We call this

modified procedure the row reduction augmentation.

Let rs[i] and rd[j] be the remaining supply and demand at supply node i and demand

node j, respectively. The row reduction augmentation procedure may be described as

follows:

>12



Procedure ROW REDUCTION AUGMENTATION

begin

1. I- (1, ... , m} and J - {1, ... , n);

2. UNEXHAUSTED - (i : rs[i] > 0, i = I};

3. for all i E UNEXHAUSTED

4. 8 *- min (w[ij]: j J);

5. JCAND *-- {j : w[i, j] = 8 and j IE J};

6. for all j E JCAND

7. if rd[j] > 0, then

8. f *-- min {rs[i], rd[j])

9. x[i, j] *- x[i, j] + f, rs[i] *-- rs[i] - f,

and rd[j] *-- rdU] - f; (flow assignment from i to j)

10. end if

11. if rs[i] = 0, go to 27;

12. end for

13. for all j 6 JCAND

14. Ij *-- (1: x[l,j] 0 0, Il i, andIEl);

15. if Ij - 4), go to 18;

16. end for

17. go to 27;

18. for all I E Ij

19. g[] *-- min (€,[1, k]: k E J, kj};

20. end for

21. e -min {g[!]: I E I;

22. LCAND *-- (1: [I] = 0 and I EIj;

23. select a p E LCAND;
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24. f *- min (rs[i], x[p, j])

25. x[p, j]-- x[p, j] - f and rs[p].- rs[p] + f; (deassign f units of flow from p to j)

26. x[i, j]*-" x[i, j] + f and rs[i] 4-- rs[i] - f; (assign f units of flow from i to j) 0

27. [i] -- [i] + 8;

28. if rs[i] > 0, then

29. do steps 4 through 7 of Procedure REDUCTION TRANSFER; 1

30. end if

31. end for

end 0

Proposition 5. The time bound for the row reduction augmentation is O( m2n).

P Let J = (1, ..., n). For each i e UNEXHAUSTED, obtaining the value of 8 = min

{ wk : k e J) and the index j takes O(n) time. Because I Ij 1 < m and obtaining the

value of gt[l] - min {w[l, k]: k E J, kej) for each I e Ij takes O(n) time, obtaining the

value of 0 takes O(mn) time. Therefore, the time bound for the row reduction augmenta-

tion on the supply node i is O(mn). Since at most m supply nodes are left unassigned, the

total time for the procedure is O( m2n ). 0

The effect of the row reduction augmentation in reducing the total unassigned supply

is extraordinary; particularly, for problems with a large cost range. This is due to the fact

that the reduction transfer reduces the value of the dual variable xj associated with the

demand node j; so consequently, the source node p which was deassigned from j is likely

to be immediately reassigned to another demand node. For a test problem having 400

sources, 400 destinations, total supply of 100,000, and a cost range of [0, 100000], 54,000

units of total supply remained unassigned after the column reduction. A single applica- P

tion of the row reduction augmentation procedure resulted in almost 20,000 units of new

flow assignments. A second application of this procedure yielded about 10,000 units of

additional flow assignments. For all the problems we tested, the total unassigned supply
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is reduced to about 20% of the total supply after the procedure is applied four times. We

also found that the larger the cost range, the more benefit can be achieved by multiple

applications of the procedure. Of course, we can apply the row reduction augmentation

procedure as long as the flow is being assigned. However, an inordinate amount of time

can be spent in switching supply assigned to a saturated demand node when the proce-

dure tries to complete the last few flow assignments. Also, this heuristic may never

achieve a complete flow assignment. Hence, the row reduction procedure should be

terminated after a given number of applications. Based on our experience, we recom-

mend application of the row reduction augmentation procedure T times where

T = max { 1, INT( log1 o [ max ( cij : for all i, j) ]-1)} and INT(co) denotes the

largest integer such that INT(ci) < o.

V. SHORTEST AUGMENTING PATH

The shortest augmenting path procedure is used to complete the last few flow assign-

ments. In each iteration, this procedure selects an unexhausted supply node, say i, and

builds a shortest path from i to an unsaturated demand node using the reduced cost for

arc lengths. Then, it augments some amount of flow f along this path by assigning f

additional units of flow from all supply nodes on the path to their succeeding demand

nodes, and deassigning f units of flow from all supply nodes to their proceeding demand

nodes. The total flow is increased by f with each application of this procedure. We use a

label setting algorithm to obtain the shortest path and stop the procedure whenever an

unsaturated demand node has been permanently labeled.

Proposition 6. The shortest augmenting path procedure has a time bound of

O (Umn), where U is the total supply.
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The proof of Proposition 6 and a detailed description of our implementation of the label

setting algorithm and dual updating procedure may be found in Wang [1990].
0

From Proposition 6, we can see that using the shortest augmenting path (SAP) proce-

dure to solve the transportation problem may be very expensive when the total supply is

large. For example, let i be an unexhausted supply node with 4 units of remaining

supply. In the worst case, it probably requires the development of four shortest path trees

in order to complete these 4 units of flow assignments. Consider the shortest path tree

illustrated in Figure 4. Supply node i has 4 units of remaining supply and demand node j

has 3 units of unsatisfied demand. However we can not send 3 units of flow through the

path (i, j2, i2. i } because the residual capacity of the arc (j2. i2 ) is 1. Suppose f is the

amount of flow which can be sent along the shortest augmenting path. Clearly,

f < min { si- . xik, dj - I xj ). if f = si- Xxik, then supply node i is exhausted

and one will select another unexhausted supply node, if any, to continue the work. If

f < si- I xj,, then we can reuse part of the shortest augmenting path tree. The follow-

ing proposition presents the theory we use in saving part of the shortest path tree.

J2] 12 j 3)

Figure 4. Sample Shortest Path Tree
({) gives the remaining supply(demand) at root (tail) node and [-]
denotes the flow or residual capacity on the corresponding arc.)

Proposition 7. Let I = (1, ... , m), J = {1, ..., n), and (k, r, x) denote a set of vectors

that satisfy (6) and (7). Select an i c ( 1: Ek xk < s[l], I e I) and let q be an unsatu-
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rated demand node. Let S = { i, ji, ii, ...., j, it, q ) be the shortest alternating path

from i to q. Suppose that dist[j] is the distance label of j when the procedure is termi-

*1 nated; P is the set of demand nodes with permanent distance labels; and Q is the set of

supply nodes whose predecessors are in P. Let 6 be the current minimum distance label

of demand nodes in the set T, and let f be the maximum flow that can be augmented

along the shortest path S, i.e. f - min m s(s- Xin, dj - Z xu, x idj, ..., x id, }- Let

jpred[I be the predecessor of j, j E J; and ipred[i] be the predecessor of i, i E I. Let

A, + 6,1= i

A- A, - dist[ipred[1i + 6, 1 E Q \ (i}

A,, otherwise,

a k + dist[k] - 6, k E P

k, otherwise.

If f < s,- x k and f < min {xij,, ..., xd,), then let

dist[k] 0, kEP

0 dist[k], otherwise,

P -P, - T, (5 *-- Q, jpred *-- jpred, ipred ipred, and 6-0.

If f min m xij , ..., Xd,) and f < s,- XJk, then let

0 h=min (r: xi, - fandr= 1, ... ,t),

Ph *- ( k: k E P and k became permanently labeled before jh), and

Qh."{l: l=i or IEQ and ipred [1] E Ph). Let

I ipred[l], 1 E Oh

ipred[l]
0, otherwise,

0
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jpred[k], k E Ph

jpred[k] - jpred[k], k Ph and jpred[k] e Oh 0

1, where I e dk =dist[k], I E Qh ), k 0 Ph and jpred[k] 0QOh,

0, kEPtb

dist[k] -- dist[k] -6, k Ph and jpred[k] E Oh

min {&w I e Qh ), k 0 Ph and jpred[k] 0 Qh,

and - Ph, T 4-{k : dist[kJ = 0, k E \Ph , (5 *" Qh, and 6 *- 0.

Then dfst is a set of valid distance labels, i.e., P is the set of demand nodes with dist as

new permanent distance labels; (5 is the set of supply nodes whose predecessors are in 0

P with the root node i; 6 is the current minimum distance label of demand nodes in the

set T; jpredbj] is the predecessor of j; and ipred[i] is the predecessor of i.

A detailed proof of Proposition 7 may be found in Wang [1990].

We have implemented Propositions 7 in our algorithm, so that the procedure will

continue to use the shortest augmenting path spanning tree rooted at supply node i until

its supply is exhausted. The empirical analysis showed that by doing so it saves about

one-third of the time required for this procedure.

VI. THE ALGORIHM

The shortest augmenting path algorithm for the transportation problem can be stated

as follows: 0
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Procedure SAPT

begin

1. Perform a COLUMN REDUCTION as described in Section 1I;

2. If an optimum has been obtained, then terminate;

3. Perform a REDUCTION TRANSFER as described in Section m;

4. Perform a ROW REDUCTION AUGMENTATION as described in Section IV;

5. If an optimum has been obtained, then terminate;

6. Perform the SHORTEST AUGMENTING PATH Procedure as described in

Section V until an optimum has been obtained.

7. end

Theorem 1. Let U be the total supply and suppose U > max im, n). Then the

* shortest augmenting path algorithm (Procedure SAPT) will achieve an optimal solution

in O(Umn) time.

Ptro. From Propositions 1, 3, 5, and 6, the column reduction takes O(mn) time, the

reduction transfer takes O(mn) time, the row reduction augmentation takes O( m2 n ),

and tht sl'.rtest path augmentation takes O(Umn). Since U a m, SAPT has a time

bound of O(Umn).

This algorithm has been implemented in a FORTRAN code called SAPT. It stores

the costs in a single dimensioned array of length inn. In addition it uses six m length

0 arrays, eight n length arrays, and four arrays of length max(m, n).

The codes which we obtained for comparison are RELAX (Bertsekas and Tseng

[1988a and 1988b]), NETFLO (Kennington and Helgason [1980]), and NETSTAR devel-

0 oped by Richard S. Barr of Southern Methodist University. RELAX is a special imple-

mentation of the primal-dual algorithm. Both NETFLO and NETSTAR are special imple-

mentations of the network simplex method. Kennington and Helgason have compared

* their code NETFLO with RNET which is a network simplex code developed by T. Hsu and
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M. Grigoriadis at Rutgers University and the empirical results showed that NETFLO is

about 4% slower than RNET on comparable problems. We believe that NETSTAR is one
0

of the world's fastest pure network codes.

Tables 1 through 5 present our empirical results with RELAX, NETFLO, and

NETSTAR on eighty randomly generated problems. The total supply varies from 1000 to 0

100,000. The column entitled size gives the number of sources and number of destina-

tions so that the number of nodes is always double the size. The problems were all dense

so that the number of arcs is the size squared. None of these codes exploited the fact that 0

the problems were dense. The test runs were performed on a Sequent Symmetry S81 at

SMU. This machine is configured with 32 Mbytes of memory and runs a modified ver-

sion of UNIX' t. A summary of Tables 1 through 5 is presented in Figure 5. •

NETSTAR is clearly the fastest of the three codes. Both NETSTAR and NETFLO are

very robust over a wide range of parameters. RELAX is very sensitive to the total supply

and required more than twice the time to solve these eighty test problems as did

NETSTAR.

0

0

t UNIX is a trade mark of AT&T Bell Laboratories.
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320-

_ML* NETSTAR
240-

160-
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0i 10600 20600' 30600 40600 50600' 600 70600 '0600 'o0600' I

total supply

Figure 5. Performance of RELAX, NETFLO, and NETSTAR.

Each time is a sum of solution times of 16 mxm transportation problems, in which
m ranges from 100 to 400, maximum cost ranges from 100 to 100,000.
Total solution times for 80 problems:
RELAX - 3150.18 (secs.), NETFLO - 2418.69 (secs.), NETSTAR - 1362.03 (secs.).

Tables 6 through 10 present our empirical results comparing NETSTAR with SAPT.

The shortest augmenting path code is very sensitive to the total supply and was dominated

by NETSTAR on four of the five test sets. Where as NETSTAR requires approximately

the same time for each of the five test sets (we attribute this fact to the unique feature of

the primal simplex method which starts with a feasible solution in the process of finding

an optimum), SAPT requires 3.5 times as much time to solve the fifth test set as the

first. This is consistent with the complexity result presented in Theorem 1. The perform-

ance of SAPT and NETSTAR as a function of total supply is illustrated in Figure 6.
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Figure 6. Performance of SAPT and NETSTAR as a function of total supply.

Each time is a sum of solution times for 16 mxm transportation problems, in
which m ranges from 100 to 400, maximum costs range from 100 to 100,000.

VII. THE SCALING TECHNIQUE

One technique which can minimize the effect of the total supply on the performance

of SAPT is the scaling technique. The idea is to modify the shortest augmenting path

procedure so that larger augmentations are possible during the early stages of the algo-

rithm. Hopefully, fewer augmentations will be required to attain optimality. The scaling

technique we use is called the Edmonds-Karp scaling method (Edmonds and Karp

[1972]) or right-hand-side scaling (Orlin [19881).

The shortest augmenting path algorithm with the scaling feature for solving the trans-

portation problem has been implemented in a FORTRAN code called SAP_ST and com-

pared with NETSTAR. The empirical analysis is presented in Tables 11 through 15.

SAPS_T was some 35% faster than SAPJT but was still sensitive to the total supply. For

E-22



the test runs with total supply of 1,000 and 5,000, SAPST was faster than NETSTAR.

For the test runs with total supply of 10,000, 50,000, and 100,000, NETSTAR dominated

SAPS.T. A summary of all the empirical results with all codes is illustrated in Figure 7.

(seconds)

800-

........... -RELAX

640-

560 +

4 SAP T

NETFLO
400-

SAP ST

320-" tNETSTAR

240 -

0

10600 20600 30600 40600 50600 Woo0 70600 80000 9000 1000O

total supply

*Figure 7. Performance of RELAX, NETFLO), NETSTAR, SAP-T. and SAPST.
Each time is a sum of solution times of 16 mxm transportation problems, in
which m ranges from 100 to 400, maximum cost ranges from 100 to 100,000.
Total solution times for 80 problems:
RELAX - 3150.18 (secs.), NETFLO - 2418.69 (secs.), NETSTAR = 1362.03
(secs.), SAP_T - 1950.06 (secs.), SAPS T = 1443.54 (secs.).

SAP_S_T dominates both RELAX and NETFLO on all test problem sets. For small

amounts of total supply (below 5,000) SAPS_T is faster than NETSTAR. When the total

supply was at least 10,000, NETSTAR dominated all of the codes.

0



VIII. SUMMARY AND CONCLUSIONS

In this study, we present an extension of the shortest augmenting path algorithm to the

transportation problem. This approach has been extremely successful when applied to

both the assignment and the semi-assignment problem dominating all other competing

algorithms by a wide margin. In this study, we found that this algorithm is extremely

sensitive to the total supply and degrades as the total supply increases. For problems with

small total supply, the algorithm is the best method available outperforming the highly

successful NETSTAR. The scaling method is very effective when applied to this algo-

rithm reducing the total time by approximately 35%. The key to success with this type of

algorithm is the use of clever heuristics to get an advanced start prior to application of

methods for generating shortest path trees.

Both empirical evidence and the complexity analysis confirm our belief that network

problems which have small total supply can best be solved using dual methods and net-

work problems which have large total supply can best be solved using primal methods.

We believe that the present study is the first to clearly demonstrate this phenomena. This

conclusion is consistent with our previous studies on the assignment problem and the

semi-assignment problem.
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